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Abstract

As we enter the era of large imaging surveys such as Roman, Rubin, and Euclid,
a deeper understanding of potential biases and selection effects in optical astro-
nomical catalogs created with the use of ML-based methods is paramount. This
work focuses on a deeper understanding of the performance and limitations of
deep learning-based classifiers as tools for galaxy merger identification. We train
a ResNet18 model on mock HST CANDELS images from the IllustrisTNG50
simulation. Our focus is on a more challenging classification of galaxy mergers
and non-mergers at higher redshifts 1 < z < 1.5, including minor mergers and
lower mass galaxies down to the stellar mass of 108M⊙. We demonstrate, for the
first time, that a deep learning model, such as the one developed in this work, can
successfully identify even minor and low mass mergers even at these redshifts. Our
model achieves overall accuracy, purity, and completeness of over 76%. We show
that some galaxy mergers can only be identified from certain observation angles,
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leading to a potential upper limit in overall accuracy. Using Grad-CAMs and
UMAPs, we more deeply examine the performance and observe a visible gradient
in the latent space with stellar mass and specific star formation rate, but no visible
gradient with merger mass ratio or merger stage.

1 Introduction

Galaxies grow through cosmic time hierarchically. In addition to growing in total mass, this process
also forms new stars, changes galaxy morphologies, and can trigger active galactic nuclei (AGN)
activity (e.g., [3, 20, 11, 32, 34, 33, 12, 23, 4]). To fully understand the role of galaxy mergers in star
formation and AGN activity, we need large catalogs of merging galaxies at different merger stages
and across a range of stellar masses and merger mass ratios. However, this can be challenging as
many non-parametric methods are calibrated at low-z and are targeted at identifying major mergers
(merger mass ratio µ ≥ 1/4) among high mass galaxies (M⋆ ≳ 1010M⊙). These methods quantify
the distributions of light in an image to measure how concentrated, clumpy, or asymmetric the
distribution is [10, 17]. The merger stage adds another complication. Finding early-stage mergers
with two identifiable nuclei and faint features like tidal tails is easier for non-parametric methods
(e.g., tidal tails causing asymmetry) than finding late-stage mergers near coalescence. Close pair
analyses, which find galaxies that are within a given separation in physical and velocity space, can
identify early-stage mergers, but only looking at early stages leaves out half of the merging population.
Combining non-parametric methods through Linear Discriminant Analysis (LDA) or a Random
Forest (RF) (e.g., [22, 31, 27, 37]) is one way to get a more accurate and diverse catalog of mergers.

Convolutional Neural Networks (CNNs) offer an even more flexible method for finding mergers at
different merger stages and redshifts since they have the ability to utilize all features present in galaxy
images. They have already been applied to multiple mock and real imaging survey datasets (e.g.,
[7, 39, 5, 18, 26]). Still, the majority of these studies are focused on lower redshifts (all are at z < 1
except [38] at z = 2 and [26] at 3 < z < 5), and higher mass galaxies (all above M⋆ = 109M⊙
except [26]). We apply our CNN to a sample that includes both higher-z galaxies (1 < z < 1.5) and
lower mass galaxies (M⋆ > 108M⊙). Our aim is that by using machine learning (ML) rather than
visual identification, we can avoid biases of identifying only more obvious mergers. Additionally,
CNNs are not restricted to any redshift or mass range, and could potentially be able to identify even
less visible merger features (such as those in minor mergers or high-z galaxies). We aim to use
interpretive tools, such as examining important regions of the image with Gradient-weighted Class
Activation Mapping [Grad-CAM; 28] and the latent space with UMAPs [19], to better understand
how to identify high-z mergers and why our network made its decisions.

2 Data

Cosmological simulations have proven to be useful tools in training ML algorithms for merger
identification since there is a ground truth that is separate from any other merger identification tools,
including by-eye classification. This work uses the IllustrisTNG cosmological magnetohydrodynami-
cal simulation suite [24, 21]. We use the smallest TNG50 box with 50 comoving Mpc per side. Its
∼ 0.1 kpc spatial resolution and ∼ 8 × 104M⊙ baryonic mass resolution provide a diverse set of
galaxy morphologies, stellar masses, and details that may be important for distinguishing mergers
from non-mergers such as star-forming clumps. We utilize the definition of a merger from [25] and
apply a minimum mass cutoff: any subhalo (galaxy) at least 1000 times the baryonic mass resolution
with two direct progenitors in the previous time snapshot is classified as a merger. We use two full
snapshots (which include full physics outputs necessary to run radiative transfer): z = 1 and z = 1.5.
We apply a 500Myr time window centered around those snapshots, and anything that merges at any
point in that window is considered a merger. All images are taken at the two central snapshots, which
means that our sample includes early-stage mergers that merge later in the window but have not
yet merged at the central snapshot, and late-stage mergers that merge early in the window and are
near coalescence at the central snapshot. For each merging galaxy found, we find a corresponding,
mass-matched non-merging galaxy in the same snapshot.

To create our mock images, we first use the radiative transfer code SKIRT that includes dust and
AGN [version 9; 2, 1, 8, 9] (for details see [35] and [29, 30]). Each extracted galaxy is observed

2



Accuracy Purity Completeness Brier Score ECE AUC

75.9± 1.5% 76.6± 2.1% 74.7± 0.5% 0.17± 0.01 0.06± 0.01 0.84± 0.01

Table 1: Mean and standard deviation of Accuracy, Purity, Completeness, Brier Score, ECE, and
AUC for our model’s three random seeds.

Accuracy

All Mergers Major Minor Early Stage Late Stage Non-mergers

75.7± 0.5% 76.5± 0.82% 73.2± 0.73% 80.6± 1.5% 70.2± 0.7% 77.1± 2.5%

Table 2: Mean and standard deviation of our model’s accuracy in three random seeds broken down by
different subsets of galaxies.

from six viewpoints. We then filter the wavelengths down to those of the HST CANDELS F606W,
F814W, and F125W filters [15]. Additionally, we rebin to the camera’s pixel scale and convolve with
the PSF from the Tiny Tim software [16] in that filter (following[22]). The CNN must be able to
distinguish between merging galaxies and background sources, so we place our mock galaxies in
realistic environments by creating cutouts from real CANDELS mosaics that are not centered on any
sources. Any galaxy that had issues producing a reliable radiatively transferred image was thrown out,
but we kept the matched counterpart because it did not drastically change the balance of the dataset.

Our dataset is split into training (70%), validation (15%), and test (15%) sets. All viewpoints of any
given galaxy are in the same set. The images are normalized between 0 and 1 with a log stretch. The
training set includes data augmentation through rotation up to 30◦ and a vertical or horizontal flip,
which makes the total number of images in the training set 5940 mergers and 5916 non-mergers, the
validation set 630 mergers and 624 non-mergers, and the test set 630 mergers and 630 non-mergers.
Example images are shown in the bottom right of Figure 1.

3 Methods

We use the ResNet18 architecture [14], with pre-trained weights from Zoobot2.0.2 [36] in PyTorch
and train for around 2 hours on 2 GPUs. We set the initial learning rate 10−5, and employ an
exponential learning rate decay of 0.5 and cross-entropy loss with the Adam optimizer. This is a
binary classification (merger or non-merger), so after convolutional layers, we change the head to
have 2 output nodes. Early stopping is triggered if the validation set loss does not improve by at least
0.0001 for 10 epochs. The epoch with the lowest validation loss is used to save the best model1.

We examine the performance of our model using standard metrics such as accuracy, completeness,
and purity. To further examine the behavior of our trained model, we utilize GradCAMs [28], which
use the gradients heading into the final convolutional layer of a network to identify the key pixels
for a given class. UMAP [19] is a dimensionality reduction technique, which we use to examine
the high-dimensional latent space of our model (penultimate layer). By seeing how close different
galaxies in our test set appear on a UMAP, we can determine what physical processes the CNN may
have recognized.

4 Results

We train three models with different random seed initialization to ensure model stability. The mean
accuracy, completeness, and purity of all three random seeds are shown in Table 1. All plots are from
Seed 626, as it has both the highest accuracy and completeness. All seeds in our model classifying
galaxies with M⋆ > 108M⊙ at 1 < z < 1.5 have accuracy of ∼ 75%, similar to models reported for
galaxies at M⋆ > 109 at 0.1 < z < 1 in[18]. We examine Grad-CAMs, UMAPs, and the effect of
observation angle to dig into what may have been causing difficulties in classifying galaxies.

The Grad-CAMs (Figure 1, bottom left) show that the network focuses on the galaxy when it makes
its decision. The central galaxy is highlighted when activating the predicted class, and the edges are

1Data and code will be made public in the accepted version of the manuscript.
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Figure 1: Top row: Box plots showing the 25th-75th percentile (inter-quartile range, IQR) of the
data inside the box, with the whiskers stretching to the furthest point within 1.5 times the IQR. The
remaining points are outside of that range. These show the overall distributions of galaxies by merger
mass ratio (left; dotted line separates major and minor mergers) and stellar masses (center and right),
which are identified correctly from a given number of observing angles. Bottom left: Grad-CAM
showing that the network focuses on the central galaxy when making its prediction. Bottom center
and right: UMAPs showing the true class by shape (non-mergers triangle, mergers circle) and colored
by stellar mass and SFR, respectively, which show a clear gradient.

highlighted for the non-predicted class. This is true for mergers and non-mergers. The Grad-CAMs
are not different enough between classes to draw conclusions about specific image features, but
do offer confidence that the network has learned not to focus on background noise or sources, an
important quality of successful merger identification using CNNs [7].

We examine UMAPs of the test set images in terms of multiple physical quantities of the galaxies.
The mergers (circles) primarily live on the bottom side of the UMAP, and non-mergers (triangles) on
the top. However, there is a lot of overlap in the middle. We see a clear gradient in the UMAP when
colored by the stellar mass of each galaxy (Figure 1, bottom center). The low-mass galaxies are on
the right of the UMAP, with stellar mass increasing towards the left. No stellar mass information was
provided during training, but the network was able to recognize this physically meaningful quantity.
There is again a clear gradient in the UMAP when colored by specific star formation rate (sSFR;
Figure 1, bottom right). Similarly to stellar mass, the less star-forming galaxies are on the right with
sSFR increasing towards the left, even though no sSFR information was input to the model. Because
of this gradient, we speculate some of the non-mergers misclassified as mergers may be due to high,
clumpy star formation, likely in the non-mergers seen in the bottom right. There were no obvious
trends for UMAPs relative to the merger stage or merger mass ratio.

There may be a ceiling of around 85% accuracy for merger identification due to some morphological
disturbances not being visible from every observation angle, and some clumpy non-mergers being
indistinguishable from minor mergers [6]. Each galaxy in our test set is observed from six different
angles. We examine the number of viewing angles from which a given galaxy is correctly identified,
as a function of merger mass ratio and stellar mass, using box plots. On the top left panel of Figure 1,
we can see that almost all mergers were identified correctly from at least one angle. Major mergers
(µ ≥ 1/4) can cause large morphological disruptions, and thus we expect them to be easier to identify
than minor mergers. Overall, as the mass ratio increases, the merger is identified correctly more often.
However, we note that not all major mergers are correctly identified from more than three viewpoints.
The misclassification of major mergers could be due to a major merger between lower-mass galaxies,
and thus it is harder to identify than a merger between high-mass galaxies. Alternatively, if one of
the galaxies is large and spheroidal, it could be blocking the companion galaxy, making it invisible
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from some angles. Finally, a late-stage merger can be tricky to identify even among major mergers,
but CNNs have been proven to be capable of it [5, 13]. We also note that though minor mergers
(1/10 < µ < 1/4) can be difficult to reliably identify, the majority of minor mergers were correctly
identified at four or more angles (out of six possible), proving that CNNs can be a path forward in
fully understanding the role of all mergers in galaxy evolution.

The lack of a trend in the stellar mass plots for both mergers and non-mergers (Figure 1 top center
and right) is promising: with the right training data, CNNs enable the identification of less obvious,
minor mergers among galaxies with stellar mass M⋆ < 109M⊙. Important to note for our analysis is
that the train, validation, and test sets all include more low-mass than high-mass galaxies and more
minor mergers than major mergers. This reflects the hierarchical structure that is expected in any 50
Mpc3 box of either simulated or real data: far more low-mass galaxies than high-mass galaxies. We
speculate that when the network incorrectly classifies a high-mass, major merger, it is because it does
not see as many examples of these mergers during training.

5 Conclusions and Outlook

We used a CNN trained on mock HST CANDELS images from the IllustrisTNG simulation at z ∼ 1
to identify a wide range of galaxy mergers, including masses down to M⋆ = 108M⊙ and merger
mass ratios down to µ = 1/10. The network has a final accuracy of ∼ 76%. A few of our highest
mass merging galaxies were incorrectly classified, and in the future, we could potentially correct this
by combining low-mass galaxies from TNG50 with a sample of high-mass galaxies from the larger
simulation box size, TNG100, to create a more balanced and larger training set. UMAPs show us that
the network is sensitive to the stellar mass and star formation rates of the galaxies. Our non-merger
sample is currently only mass-matched, and with a bigger box size, we could also find SFR-matched
non-mergers to break the reliance on SFR. By building a training set with similar numbers of major
and high-mass mergers as minor and low-mass mergers, we could potentially improve the distinction
between mergers and non-mergers for all subcategories of galaxies.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract includes a few sentences of motivation in the astrophysical
field we apply ML to. It additionally includes a statement on the accuracy, purity, and
completeness of the model and briefly discusses our interpretive techniques.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of galaxy mass, redshift, and orientation angle in our
results section. We additionally discuss potential improvements in our conclusions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: No theoretical results presented or discussed.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide information and citations for all steps taken. All code will be
available on GitHub.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. Releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code will be available on GitHub, and we have a short summary of the compute
resources.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details in Section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are included in the tables and figure, and all details are given in the
captions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Explanation in Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We include appropriate citations for all work, code, and data used here. All
authors believe in working in a fair and open work environment.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work addressed using ML for astronomy, so while ML has larger societal
implications, we do not belive the work presented here has social impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Astronomical datasets do not have high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use data from IllustrisTNG, CANDELS, and Zoobot which is all publicly
available and cited, and Zoobot is trained on publicly available SDSS data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code to make mock images from publicly available data will be available
on a github once approved and in a zip file.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used to troubleshoot coding errors and assistance with
phrasing in the text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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