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ABSTRACT12

Galaxy mergers play an important role in many aspects of galaxy evolution, therefore, more accurate13

merger identifications are paramount for achieving a complete understanding of galaxy evolution. As14

we enter the era of very large imaging surveys, we are able to observe mergers extending to even lower15

masses and higher redshifts. Despite low-mass galaxies being more common, many previous merger16

identification methods were mostly calibrated for high-mass, local galaxies, which are easier to identify.17

To prepare for upcoming surveys, we train a convolutional neural network (CNN) using mock HST18

CANDELS images at z ∼ 1 created from the IllustrisTNG50 cosmological simulation. We successfully19

identify galaxy mergers between a wide range of galaxies (108M⊙ < M⋆ < 1012.5M⊙, and µ > 1 : 10),20

achieving overall accuracy, purity, and completeness of ∼ 73%. We show, for the first time, that a CNN21

trained on this diverse set of galaxies is capable of identifying both major and minor mergers, early22

and late stage mergers, as well as nonmerging galaxies, similar to that of networks trained at lower23

redshifts and/or higher masses (with accuracies ranging between 66 − 80%). We discuss the inherent24

limits of galaxy merger identification due to orientation angle and explore the confounding variables,25

such as star formation, to consider when applying to real data. This network enables the exploration26

of the impact of previously overlooked mergers of high mass ratio and low stellar masses on galaxy27

evolution in CANDELS, and can be expanded to surveys from JWST , Rubin, Roman, and Euclid.28

Keywords: galaxy evolution — galaxy mergers29

1. INTRODUCTION30

Galaxy mergers are one of the main avenues for galax-31

ies to evolve from clumpy, high-redshift galaxies into the32

organized structures we see in the local universe, both33

with large morphological changes due to major merg-34

ers and building stellar mass through minor mergers35

(e.g. Toomre & Toomre 1972; Mihos & Hernquist 1996;36

Buitrago et al. 2013; Martin et al. 2018). Identifying37

their role in galaxy evolution is a key task for observa-38

tional astronomy, especially in the era of high redshift39
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science with JWST (Gardner et al. 2006), and large as-40

tronomical surveys and telescopes such as the Vera C.41

Rubin Observatory’s (Rubin) Legacy Survey of Space42

and Time (LSST; Ivezić et al. 2019), Nancy Grace Ro-43

man Space Telescope (Roman; Akeson et al. 2019), and44

Euclid (Scaramella et al. 2022).45

Though mergers are an influential process in galaxy46

structures, they can prove tricky to identify. A galaxy47

merger can take hundreds of Myr to a few Gyr, depend-48

ing on factors such as mass ratio and orbital parame-49

ters (Lotz et al. 2008). Merger stage can also compli-50

cate merger identification, as the galaxies do not ex-51

perience each stage for an equal amount of time, and52

thus some stages are more common than others. There53
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is a range of morphologies associated with each merger54

stage, and thus the method used influences which merg-55

ers are found and which are missed, as certain methods56

are more sensitive to certain morphologies (Lotz et al.57

2008).58

Mergers experiencing their first pass (early stage) are59

easier to identify than mergers experiencing the coales-60

cence of the nuclei (late stage). The human eye is his-61

torically trustworthy at identifying low-redshift, early-62

stage mergers, especially when multiple people visually63

inspect each image (e.g., Darg et al. 2010). Visual (i.e.,64

”by-eye”, performed by scientists) classification efforts65

have enabled huge amounts of science on the role of66

mergers, but they have some drawbacks. First, it re-67

quires many human hours. Some of this has been out-68

sourced to citizen scientists with projects like Galaxy69

Zoo (Lintott et al. 2008). A method that does not70

require large groups of people spending hours of their71

time to classify galaxies is more desirable. Second, the72

human eye may struggle to capture a range of galaxy73

mergers. Visual classification studies are biased to early-74

stage, major (merger mass ratio µ ≥ 1 : 4) mergers, due75

to these systems having obvious morphological distur-76

bances and/or signatures of multiple galaxies, such as77

two stellar bulges. Late-stage, minor mergers (mass ra-78

tio µ < 1 : 4) may be missed since they can be mistaken79

for isolated galaxies, not highly disturbed, or even just80

visually overlapping galaxies.81

These biases in visual classifications lead to the use of82

quantitative imaging predictors such as the concentra-83

tion (C), asymmetry (A), and smoothness (clumpiness)84

(S) i.e., CAS parameters (Conselice 2003) and Gini-M2085

(Lotz et al. 2004). These non-parametric morphology86

measurements are all based on various ways of measur-87

ing distributions of light in images, often separating qui-88

escent galaxies from star-forming galaxies, and more de-89

fined morphologies from disturbed systems. Separating90

those types of morphologies is extremely useful in iden-91

tifying mergers. The merger stage and image quality92

affect which method correctly identifies more mergers,93

as morphological asymmetry is more accurate for merg-94

ers in early stages, and Gini-M20 is more successful with95

mergers near the end of the process (Nevin et al. 2019;96

Wilkinson et al. 2024). However, all of these methods97

are calibrated on lower-z galaxies and may need to be98

adjusted for high redshift galaxies.99

Galaxies and galaxy mergers at higher redshifts, z,100

look different than those in our local universe (Conselice101

2014 and references therein). For example, galaxies at102

z > 1 are often clumpier and contain more gas and dust103

compared to low-redshift galaxies. The physical mor-104

phology of high-redshift galaxies could make it harder105

to identify mergers visually, since the clumpy, uneven106

structure could make these galaxies appear to be merg-107

ing even when they are actually isolated. These galaxies108

are also often smaller than their present-day counter-109

parts. Therefore, how we identify low-redshift mergers110

may need to be different from how we identify high-111

redshift mergers. There have been by-eye classification112

efforts out to z ∼ 7(Kartaltepe et al. 2015; Simmons113

et al. 2017; Willett et al. 2017; Smethurst et al. 2025),114

though not all by-eye classifications can identify merg-115

ers.116

Convolutional Neural Networks (CNNs) are a type of117

neural network for working with imaging data. Their118

ability to extract useful features from images (even those119

that might not be obvious to the human eye) makes120

them a promising tool with which to identify galaxy121

mergers. Many studies have successfully shown that122

CNNs outperform both by-eye identification and Gini-123

M20/CAS at z < 1 (Bickley et al. 2021; Ackermann et al.124

2018). By using machine learning rather than visual by-125

eye identification, we avoid biases humans may have of126

identifying only more obvious mergers, such as a merger127

between two large spiral galaxies. Additionally, CNNs128

are much faster than human identification, which is an129

increasingly important consideration as we prepare for130

large observational survey telescopes.131

When considering CNNs as a merger identification132

tool, it is important to take into account that CNNs, as133

any other machine learning model, can only learn from134

the information contained in the training set. There-135

fore, which mergers astronomers decide to include in136

their training set dictates which masses, mass ratios,137

and merger stages the CNN will be most likely to find.138

CNNs have been commonly trained on samples of galax-139

ies that are identified by eye, both by citizen scientists140

and by experts. Many papers have used the Galaxy Zoo141

data to train or test the performance of their network to142

identify galaxy morphologies (e.g., Dieleman et al. 2015;143

Domı́nguez Sánchez et al. 2018; Cavanagh et al. 2021).144

However, Bickley et al. (2021) showed that compared145

to CNNs, visual inspection can often lead to many dif-146

ferent classifications of any given galaxy depending on147

the training of the individual performing the classifica-148

tion. Therefore, it is becoming more common to train149

networks on mock images of simulated galaxies because150

this ensures that the mergers/nonmergers used in the151

training set are known a-priori.152

Mock images from the IllustrisTNG cosmological sim-153

ulation suite (Marinacci et al. 2018; Naiman et al. 2018;154

Nelson et al. 2018; Pillepich et al. 2018; Springel et al.155

2018) are a common choice for a training set due to156

TNG’s wide range of galaxy morphologies and match157
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of observational galaxy properties at z = 0. Many pa-158

pers choose to make mock images from TNG100-1 or159

TNG300-1, with the ∼ 100Mpc per side and ∼ 300Mpc160

per side boxes respectively, and use neural networks161

to classify mergers (Bickley et al. 2021; Bottrell et al.162

2022; Ferreira et al. 2022; Avirett-Mackenzie et al. 2024;163

Margalef-Bentabol et al. 2024; Ferreira et al. 2024b).164

The highest spatial resolution run of TNG, TNG50165

(∼ 50Mpc per side box; Nelson et al. 2019; Pillepich166

et al. 2019), was used as the training set in Omori et al.167

(2023). The TNG100 and TNG300 boxes contain sig-168

nificantly more volume than the TNG50 box, and thus169

enable much larger training sets of mergers and non-170

mergers. These works show that machine learning com-171

bined with TNG can be successful at identifying merg-172

ers at both early and late stages at lower redshifts z < 1173

and higher masses M⋆ ≳ 109M⊙ for a variety of mocked174

imaging surveys. Pearson et al. (2019) also showed suc-175

cessful ML merger identification with with the EAGLE176

simulation (Crain et al. 2015; Schaye et al. 2015), and177

Domı́nguez Sánchez et al. (2023) with the Horizon-AGN178

simulation (Kaviraj et al. 2017).179

Along with the use of neural networks, recent years180

have witnessed an explosion in the field of eXplainable181

aritificial intelligence (XAI), which seeks to promote182

interpretability in machine learning tools (see Arrieta183

et al. 2019 for a review). Pixel attribution methods such184

as saliency maps (Simonyan et al. 2013) and Gradient-185

Weighted Class Activation Mapping (Selvaraju et al.186

2020) highlight specific pixels and regions of an input187

image that the CNN relied on for its final classification.188

Additionally, inspecting feature maps from hidden layers189

can also provide physical intuition into why the network190

makes the decisions it does. This makes CNNs less of191

a black box and more useful for astronomical purposes.192

Ćiprijanović et al. (2020) identified merging galaxies at193

z = 2 in the original Illustris (Vogelsberger et al. 2014)194

simulation with a CNN for the first time. They used195

XAI to show that when identifying mergers, their CNN196

focused on larger areas of the image that contained faint197

substructures of a galaxy, but when identifying non-198

mergers, the influential pixels were in a more compact199

area. This provided insight into what physical processes200

the galaxy images contained that the network observed201

to make a decision between merger and nonmerger.202

Using a galaxy merger sample from IllustrisTNG50,203

we create mock galaxy images from the HST CANDELS204

survey (Koekemoer et al. 2011; Grogin et al. 2011). This205

survey has some overlapping wavelength coverage with206

Roman, but since the data are already public, it has the207

benefit of creating mock images with real backgrounds208

instead of simulated background noise. We want to209

study mergers around cosmic noon (1< z <3), the peak210

of morphological evolution, for which CANDELS pro-211

vides a large sample of galaxies. CANDELS is > 90%212

complete at z <3 (Guo et al. 2013; Mantha et al. 2018).213

In this paper, we use extremely realistic, fully ra-214

diatively transferred mock HST images from Illus-215

trisTNG50 to classify mergers in optical and infrared216

filters at 1 ≤ z ≤ 1.5. We include galaxies down to217

M⋆ = 108M⊙, while still including mass ratios down218

to 1:10 and multiple merger stages. We aim to create a219

trustworthy classifier to find mergers at high-z and lower220

stellar masses with JWST , Rubin, Roman, and Euclid221

with the help of a high resolution simulation and XAI222

interpretation.223

Our merger selection from TNG and mock image pro-224

cess is discussed in Section 2, the CNN architecture, per-225

formance evaluation metrics and model interpretability226

are discussed in Section 3, the performance of our CNN227

is discussed in Section 4, and a discussion of the lim-228

itations of our sample and model is in Section 5. We229

use the Planck cosmological parameters (Planck Col-230

laboration et al. 2016), the same ones used by Illus-231

trisTNG: a matter density Ωm = Ωdm + Ωb = 0.3089,232

baryonic density Ωb = 0.0486, cosmological constant233

ΩΛ = 0.6911, Hubble constant H0 = 100h km s−1
234

Mpc−1 with h = 0.6774, normalization σ8 = 0.8159 and235

spectral index ns = 0.9667.236

2. DATA237

To quantify the role of mergers in processes at cosmic238

noon (1 < z < 3) such as galaxy morphological evolu-239

tion, cosmic star formation, and black hole activity, a240

reliable classifier that can separate mergers from non-241

mergers at low masses, including among peculiar (not242

spiral or elliptical) galaxies is necessary. Therefore, we243

aim to build a CNN that is able to identify both major244

and minor mergers, mergers at early and late stages, and245

mergers between galaxies with M⋆ > 108M⊙ at z ∼ 1.246

We create a dataset of mock HST imaging with galax-247

ies in the 1 ≤ z ≤ 1.5 redshift range. This redshift range248

is the highest redshift where spiral and elliptical galaxies249

are each about as common as peculiar galaxies (which250

would include mergers; Buitrago et al. 2013). Above251

this redshift, the universe has a different makeup than252

it does locally, with peculiar galaxies being much more253

prevalent, especially among low mass galaxies (e.g., Fer-254

reira et al. 2023). Additionally, we know minor mergers255

are an important avenue for galaxies to build up stellar256

mass over cosmic time, and that low mass galaxies are257

more common at higher redshifts (Martin et al. 2018).258

However, peculiar galaxies dominate at M⋆ < 109.5M⊙259

(Conselice et al. 2008).260
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The HST CANDELS survey is the basis for our261

mock images due to its high spatial resolution, cover-262

age around the peak of cosmic star formation, and, im-263

portantly, existing catalogs with which to compare our264

results and build additional trust in our model before265

applying to newer surveys. In order to train a success-266

ful network we need a highly realistic training set that267

includes galaxy mergers with these mass ratios, merger268

stages, and stellar masses. We use galaxies from the269

TNG50 cosmological simulation as our training set. We270

want to use high-resolution simulations and images like271

those from TNG50 (with a median spatial resolution272

of ∼0.1kpc, which is comparable to or better than the273

resolution of CANDELS images at z > 0.2) for the274

merger identification process to be sure the CNN can275

separate small, clumpy, isolated galaxies from merging276

galaxies. Using mock images from TNG50 will also pro-277

vide a strong training set since we will know the true278

classification of each galaxy, allowing our tool to be bet-279

ter trained at identifying mergers close to cosmic noon.280

We create mock images in three HST filters (F814W,281

F160W, and F606W) for a three channel CNN. This282

section describes the merger selection process from the283

simulation, and how we go from the simulated galaxies284

to fully realistic mock images.285

2.1. Cosmological Simulation and Galaxy Selection286

IllustrisTNG is a suite of cosmological magnetohy-287

drodynamical simulations spanning 0 < z < 127 with288

improved physics from the original Illustris simulation289

(Vogelsberger et al. 2014). It comes in three box sizes,290

the largest being TNG300 at roughly 300Mpc/side and291

the smallest, highest resolution run, TNG50, at roughly292

50Mpc/side (Nelson et al. 2019; Pillepich et al. 2019).293

All volumes have both “dark matter only” and “baryonic294

physics” runs. The IllustrisTNG model includes physi-295

cal processes such as gas cooling (primordial and metal-296

line), star formation, supermassive black hole formation297

and mergers, chemical enrichment from supernovae, stel-298

lar and black hole feedback, and cosmic magnetic field299

evolution, all of which impact galaxy morphologies and300

evolution. This self-consistent simulation enables us to301

investigate how morphologies change over time and how302

this may affect merger identification techniques at dif-303

ferent redshifts.304

IllustrisTNG has “full” and “mini” snapshots. Both305

snapshots trace all of the same subhalos through cos-306

mic time and include the full 50 co-moving Mpc/side307

box. A “full” snapshot contains all of the physics that308

TNG calculates, while the mini snapshots do not calcu-309

late physics for all particle fields. Since we aim to run310

radiative transfer, we only can only create images from311

snapshots that are “full”, which are necessary to make312

the mock images described in Section 2.2. The redshift313

bin centers of z = 1 and z = 1.5 are both “full” snap-314

shots. Notable examples of outputs that are only in the315

“full” snapshots are: magnetic fields, neutral hydrogen316

density, dark matter density, and stellar metallicity.317

The SubLink assembly history traces a subhalo back318

in time and connects it to subhalos in previous snap-319

shots (higher redshifts), that it evolved from. For a given320

snapshots, we identify all subhalos with a stellar mass321

greater than 1000 times the baryonic mass resolution of322

TNG50, which is 8.5 × 104M⊙. We trace the subhalos323

across cosmic time using the merger trees and merger324

definitions from Rodriguez-Gomez et al. (2015), which325

link the identities of a given subhalo to its progenitor326

and descendant subhalos at the previous and following327

snapshot, respectively. We define a merger as a subhalo328

that has both a first and a next progenitor at the pre-329

vious snapshot in time, where both progenitors share a330

descendant history with the given subhalo and the first331

progenitor is the subhalo with the more massive assem-332

bly history. We additionally require that the stellar mass333

ratio of the first and next progenitor be greater than 0.1334

to include minor and major mergers.335

We select mergers from TNG50 in two redshift bins336

centered at z = 1 and z = 1.5. To identify mergers (and337

nonmergers) for each redshift bin, we begin by iden-338

tifying all snapshots that are within 250 Myr of the339

bin center. At these redshifts, this is one mini snap-340

shot on each side of the central full snapshot. There341

are a few hundred independent mergers in each redshift342

bin. We then find mass-matched nonmerging galaxies343

by adapting the matching scheme from Bickley et al.344

(2021), as described in Schechter et al. (2025). Each345

merging galaxy is matched with a nonmerging galaxy in346

the same snapshot by searching for a galaxy within a fac-347

tor of e0.1 and expanding the threshold by an exponen-348

tial factor of 1.5 if a match is not found. No nonmergers349

are used twice as matched galaxies. A nonmerger must350

have not have merged within the past 2Gyr to be an351

eligible match.352

After following this procedure, relative to the central353

full snapshot, we have galaxies that merged at the pre-354

vious snapshot back in time (a mini snapshot), galax-355

ies that merge at the center full snapshot, and we have356

galaxies that will merge at the next snapshot forward in357

time (a mini snapshot). Though we identify some merg-358

ing one snapshot earlier or later, we trace them and359

take their image from the “full” snapshot bin center in-360

stead of the mini snapshot in which they truly merge.361

That gives us different merger stages, as we are imaging362

some galaxies pre-merging and post-merging. They are363
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the true mergers one snapshot forward and backward in364

time respectively, but are imaged at these pre or post365

phases in full central snapshot. For our analysis, we366

consider the pre-merging galaxies our “pre-coalescence”367

or “early-stage” galaxy merger sample since the merger368

trees still identify two subhalos, and both the true369

merger galaxies in the central snapshot and the post-370

merging galaxies as “post-coalescence” or “late-stage”371

mergers as the merger trees only identify one subhalo in372

both of these stages. In our case, because we are using373

theoretical definitions from the TNG merger trees, these374

may not match exactly to observational merger stages375

such as “first passage” or “nearing coalescence”.376

The resultant sample contains 260 mergers and 260377

mass-matched nonmergers at z = 1 and 446 mergers and378

446 mass-matched nonmergers at z = 1.5. We combine379

the two redshift bins into one dataset, and the distribu-380

tions of stellar mass (left figure), merger stage, and mass381

ratio (middle figure) are seen in Figure 1. The stellar382

mass ranges from 107.9 − 1012.5M⊙. The vast majority383

of our galaxies have lower masses M⋆ < 109.5M⊙, which384

could make the classification task more challenging for385

the CNN. However, we want to utilize the lower stellar386

mass galaxies as well to get a full picture of the role387

mergers overall play in galaxy evolution and cosmic star388

formation, which the high resolution of TNG50 enables389

us to do. All merger classes (pre-coalescence, merger,390

and post-coalescence) are combined into one class of391

“merger” for the CNN. The middle plot on Figure 1392

is a stacked histogram, so the overall distribution is for393

the entire merger class. The shading displays how the394

stages are broken down relative to definitions in Section395

2.1. The specific star formation rates (sSFRs) are shown396

in Figure 1 (right plot), showing that the merging dis-397

triubtion peaks at a slightly higher sSFR than the non-398

merging distribution. We show sSFR instead of SFR to399

remove the mass dependence of the star formation main400

sequence. While our sample is mass matched, it is not401

matched in SFR, due to the small box size. Matching in402

both SFR and mass required expanding the mass match403

threshold many times, so we elect to use a close mass404

match and no SFR match.405

2.2. Realistic Mock Images406

We recognize that higher spatial resolution and deeper407

imaging at z ∼ 1 exists with JWST . We choose to use408

CANDELS in this work in order to compare our up-409

coming merger catalog (which will be the focus of our410

future work) to existing merger catalogs created by non-411

ML methods to build trust in our CNN. It also gives us a412

baseline at optical wavelengths to compare to when ap-413

plying to Rubin and Roman. Lastly, in order to not just414

identify mergers but draw statistical conclusions about415

their role in galaxy evolution, we require a large sample416

of observed galaxies, ideally with known stellar masses417

and star formation rates. CANDELS provides a large418

field, which JWST does not, with existing value-added419

catalogs.420

To train the CNN on IllustrisTNG50 images for this421

goal, we must first make them as similar to real HST im-422

ages as possible. Bottrell et al. (2019) investigated how423

important realistic training images are to the final clas-424

sifications of a CNN while using one to not only identify425

mergers but also predict the merger stage. They found426

that as long as a network is exposed to background noise,427

other sources, and the spatial resolution of the telescope428

in training, it is able to predict mergers accurately when429

given real data. Notably, this paper discovered that re-430

alistic environments are more important to accurate pre-431

dictions than radiative transfer in making mock images432

to train a CNN. Nevin et al. (2019) showed detailed steps433

to create SDSS mock images to use for machine learning434

and quantitative galaxy identification methods. To cre-435

ate mock HST images, we will be adapting the method436

used by Nevin et al. (2019).437

2.2.1. Radiative Transfer with SKIRT438

The first step to create realistic mocks is to post-439

process TNG50 galaxies through full Monte Carlo con-440

tinuum dust radiative transfer calculations, using the441

publicly available code SKIRT (version 9; Baes et al.442

2011; Baes & Camps 2015; Camps & Baes 2015, 2020).443

We use the prescription described in Vogelsberger et al.444

(2020) and Shen et al. (2020, 2022); Shen et al. (2024) ,445

as done in Nevin et al. (2019).446

In this prescription, stellar particles in the simulations447

are assigned intrinsic emission using the stellar popula-448

tion synthesis method. Specifically, we adopt the Flex-449

ible Stellar Population Synthesis (Fsps) code (Conroy450

et al. 2009; Conroy & Gunn 2010) to model the intrinsic451

spectral energy distributions (SEDs) of old stellar par-452

ticles with tage > 10Myr (using the MILES spectral453

library and MIST isochrone library, this choice defines454

solar metallicity, Z⊙) and the Mappings-III SED li-455

brary (Groves et al. 2008) to model those of young stel-456

lar particles with tage < 10Myr. The Mappings-III457

SED library self-consistently considers the dust attenu-458

ation in the birth clouds of young stars, which cannot be459

properly resolved in the simulations. We employ a K-D460

tree algorithm to calculate the smoothing length enclos-461
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Figure 1. Left: Distributions of merging and nonmerging galaxies’ stellar masses. Center: Stacked histogram of merger mass
ratios in the merging sample color coded by merger stage as defined in Section 2.1. Right: Distributions of sSFR for mergers
and nonmergers.

ing 64 1 nearest stellar particles for all stellar particles462

within the galaxy. Given the spatial location and the463

smoothing length values of stellar particles, SKIRT then464

creates a photon source distribution and emissivity pro-465

file through the entire space by interpolating over these466

kernels. At the beginning of radiative transfer calcula-467

tions, photon packages are randomly released based on468

the source distribution characterized in this way. Wave-469

lengths from the Lyman edge out to optical and IR wave-470

lengths included in CANDELS filters are covered. The471

total number of released photon packages is set to be472

Np = 1010. We also use an active galactic nuclei (AGN)473

template2 to assign emission to the black hole particles.474

The AGN emission is a broken power law (Schartmann475

et al. 2005) characterized by the mass accretion rate and476

radiative efficiency of supermassive black holes (SMBHs)477

in the simulation.478

The emitted photon packages will further interact479

with the dust in the interstellar medium (ISM). To de-480

termine the distribution of dust in the ISM, we consider481

cold star-forming gas cells (star-forming or with temper-482

ature < 8000K) from the simulations and calculate the483

metal mass distribution based on their metallicities. We484

assume that dust is traced by metals in the ISM and485

adopt a constant dust-to-metal ratio among all galax-486

ies at a fixed redshift. In Vogelsberger et al. (2020),487

the dust-to-metal ratios at different redshifts has been488

calibrated based on the galaxy rest-frame UV luminos-489

ity functions at z = 2 − 10 (e.g., Ouchi et al. 2009;490

1 It is an empirical choice here for adaptive softening and mor-
phological characterizations are not sensitive to the number of
neighbors used (e.g. Torrey et al. 2015; Rodriguez-Gomez et al.
2019).

2 https://skirt.ugent.be/skirt8/class quasar s e d.html

McLure et al. 2009; J. Bouwens et al. 2016; Finkelstein491

2016; Oesch et al. 2018). For galaxies below this red-492

shift range, we use a Milky Way dust-to-metal value of493

0.4 (Dwek 1998). We then turn the metal mass distribu-494

tion into a dust mass distribution with the dust-to-metal495

ratio and map the dust distribution onto an adaptively-496

refined grid. The grid is refined with an Octree algo-497

rithm to maintain the fraction of dust mass within each498

grid cell to be smaller than 2×10−6 (Saftly et al. 2014).499

The maximum refinement level is also adjusted to match500

the numerical resolution of the simulations. Besides, we501

assume a Draine et al. (2007) dust mixture of amorphous502

silicate and graphitic grains, including varying amounts503

of Polycyclic Aromatic Hydrocarbons (PAHs) particles,504

which can reproduce the averaged extinction properties505

of the Milky Way.506

Ultimately, after photons fully interacted with dust in507

the galaxy and escaped, they are collected by six simu-508

lated detectors 10Mpc away from the simulated galaxy509

along the positive (or negative) x,y,z-directions of the510

simulation coordinates. These six viewpoints will en-511

large our training, validation, and test set sizes. We use512

a detector size that scales with redshift; the field of view513

is 100(1 + z)−1 kpc and 512 pixels per side, which is a514

physical size of 30 kpc at z = 1 and 24 kpc at z = 1.5.515

We have selected the box size to scale with galaxy size,516

which also scales as (1 + z)−1 (Bouwens et al. 2004).517

The flux in each pixel, as well as the integrated SED518

of the galaxy, are then recorded. Any galaxies that en-519

countered errors or memory issues during the radiative520

transfer processes were discarded.521

2.2.2. Filter, Rebin, and PSF522

From the radiative transferred images, we produce523

three-color (F814W, F160W, and F606W), filtered im-524

https://skirt.ugent.be/skirt8/class_quasar_s_e_d.html
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ages using the Python code SEDPY (Johnson 2021). All525

five CANDELS fields have coverage in these bands. Ad-526

ditionally, we avoid using the bluest bands available to527

encourage the CNN to learn overall morphology rather528

than focus on star forming clumps. Following filtering,529

the images are convolved with the point spread function530

(PSF) of each given HST band, which we simulate using531

TinyTim (Krist et al. 2011). We implement cosmological532

surface brightness dimming by a factor of (1 + z)−3 (in533

frequency space). We repeat the process for each CAN-534

DELS filter, as each filter has different standard flux535

values and background noise (Koekemoer et al. 2011).536

2.2.3. Realistic Environments537

A key step to making the images fully realistic is en-538

suring the galaxies are placed in the simulated image as539

they would be in HST observations, including in realistic540

field environments (Bottrell et al. 2019). We incorporate541

background sources and noise from the CANDELS mo-542

saics by creating cutouts from the CANDELS mosaics543

that have no sources at the center. We then overlay our544

mock images on top of that section of sky. Therefore,545

the noise is truly that of CANDELS imaging, and there546

are real background CANDELS galaxies and foreground547

stars in our images, an essential piece for our network to548

be able to distinguish from the central mergers. All of549

the main steps to make an example mock image in the550

F814W filter can be seen in Figure 2.551

2.3. Final Dataset Creation552

We split up our dataset into training (70%), validation553

(15%), and test sets (15%). Each class is split by the554

ratios for the training/validation/test set above, then555

combined into the final training/validation/test set fol-556

lowing the split. This ensures each set is split equally557

between mergers and nonmergers, so that neither out-558

come dominates the network’s final decisions. In reality,559

there are far more nonmergers than mergers in the uni-560

verse. However, in order for the CNN to truly learn561

the difference between mergers and nonmergers, we do562

not want to bias its decision-making by providing an563

imbalanced dataset. Recall from Section 2.2.1 that each564

galaxy is viewed from six viewpoints (as if from each face565

of a cube). When splitting the data, we make sure that566

all viewpoints of a given galaxy are always included in567

the same set, so that none of the viewpoints of galaxies568

included in the training set can appear when validating569

and testing the network. Each image is log normalized to570

have values between 0 and 1, typical for a CNN input.571

We employ the log stretch which helps faint features,572

such as tidal tails, to become more visible.573

After the mock image process, our images are size574

202×202 pixels at z = 1, and 154×154 pixels at z = 1.5.575

ResNet18 (see Section 3.1 for information on the CNN576

model) takes images of a size 224×224 pixels, so we use577

the resize operation from skimage to reach this size, as578

done in Bickley et al. (2024). This algorithm is stretch-579

ing the images with interpolation, so we maintain the580

spatial resolution information of the pixels in the orig-581

inal mock image. To additionally enhance our training582

set size, we use data augmentation on both the mergers583

and nonmergers. Each galaxy image can be randomly584

rotated up to 30°, flipped horizontally or flipped verti-585

cally. The edges of the rotated images are filled with586

zeros ensuring that all images have the same shape. We587

include both the original image and the augmented im-588

age in training. Following the mock image and data589

augmentation processes, the final dataset consists of:590

training set with 5,940 mergers and 5,916 nonmergers, a591

validation dataset with 630 mergers and 624 nonmerg-592

ers, and a test set of 630 mergers and 630 nonmergers.593

3. METHODS594

3.1. Convolutional Neural Network595

A CNN is a type of neural network specifically de-596

signed to work with images. By convolving different597

filters with an input image, it is able to extract fea-598

tures such as edges and shapes from the input image.599

While even simpler CNN architectures can achieve very600

high accuracies (above 99%) when trained to classify601

everyday objects and animals (e.g., cars, chairs, horses,602

dogs etc.) using very large benchmark datasets such as603

MNIST (Deng 2012), classification tasks in astronomy604

can be much harder. Training data sets in astronomy605

are often much smaller (for example due to the lack of606

many high-fidelity labels) and include classes that look607

somewhat similar (e.g., mergers and nonmergers both608

look like galaxies), which makes training CNNs much609

harder.610

Even with data augmentation, our dataset is on the611

smaller side, therefore, we use transfer learning to612

obtain smoother loss and accuracy curves. We use613

the ResNet18 model (He et al. 2015) with pre-trained614

weights from Zoobot2.0.2 zoobot-encoder-resnet18615

(Walmsley et al. 2023). Zoobot models are trained616

on millions of galaxy images from Galaxy Zoo us-617

ing labels provided by citizen scientists. Since618

Zoobot was trained on galaxies as opposed to im-619

ages of everyday objects, its weights provide a bet-620

ter starting point than models trained on everyday621

objects for our goal of classifying mergers. Using622

Zoobot’s FinetuneableZoobotClassifier class we set623

num classes = 2 to force a binary classification: galaxy624

merger or nonmerger. We train our CNN with the Adam625

optimizer (Kingma & Ba 2017), initial learning rate of626
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Figure 2. Main steps to create a mock F814W CANDELS image from the radiative transferred TNG50 data: 1) The left-most
panel shows the image just after it has been processed by SKIRT; 2) Next, we apply an HST F814W filter to the image so we
are no longer seeing all wavelengths of light; we also rebin the image to the same pixel scale as the CANDELS mosaics; 3) Next
we convolve with the PSF of the telescope to replicate what this galaxy would look like if observed by HST. 4) Lastly we add
real CANDELS backgrounds to include real CANDELS noise and background sources. This process will supply a more realistic
training set, and is a crucial piece to building a robust network that can classifiy CANDELS galaxies.

10−5, exponential learning rate decay of 0.5 and cross-627

entropy loss. Only the dense layer weights are updated628

during training. We initiate early stopping during train-629

ing if the validation set loss does not decrease by at least630

0.0005 after 5 epochs. The weights of the model from the631

epoch with the lowest validation loss are saved and used632

as the best model to obtain predictions on the test data.633

Training takes up to two hours and fifty four minutes de-634

pending on the random seed with one Nvidia a100 GPU.635

We train with three different random seeds to ensure636

model stability.637

3.2. Model Performance and Calibration638

To assess the performance of the CNN, we start with639

standard metrics, such as confusion matrices and Re-640

ceiver Operating Characteristic (ROC) curves. When641

discussing these metrics in the context of this study,642

we consider merger the positive class and nonmerger643

the negative class. Therefore a true positive (TP) is a644

merger correctly identified as a merger, and a true neg-645

ative (TN) is a nonmerger correctly identified as a non-646

merger. A false positive (FP) is a nonmerger misidenti-647

fied as a merger, and a false negative (FN) is a merger648

misidentified as a nonmerger.649

A confusion matrix tracks how many false positives650

and false negatives the network found, along with the651

accurate predictions. In our case, a false positive would652

be an isolated galaxy identified as a merger, and a false653

negative would be a merger identified as a nonmerger.654

If the network performed perfectly, the confusion ma-655

trix would have values only on the diagonal, with ze-656

ros everywhere else, indicating that there were no false657

positives or false negatives. The rows of the confusion658

matrix correspond to the actual class of the galaxy (true659

merger or nonmerger) and each column corresponds to660

the network’s predicted class.661

Some metrics to analyze how well the network is per-662

forming are accuracy, purity, and completeness.663

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Purity =
TP

TP + FP
(2)

Completeness =
TP

TP + FN
(3)

Accuracy is a measurement of the fraction of the time664

the network is making the correct prediction overall,665

whereas purity and completeness are specific to the pos-666

itive (merger) class. Purity and completeness are also667

sometimes known as precision and recall. Purity can668

be thought of as the percentage of predicted mergers669

that are correctly classified (e.g., how often a predicted670

merger is actually a merger). Completeness is the frac-671

tion of mergers that are correctly retrieved (e.g., out672

of the true mergers how many are correctly classified).673

Here, a low completeness would mean we are missing674

many mergers by classifying them as nonmergers. Often675

an increase in purity, can lead to a decrease in complete-676

ness, and vice versa. In the case of our CNN, having high677

purity and completeness would mean low contamination678

in our merger sample, since we would be classifying most679

galaxies correctly (with the purity of our merger sample680

being particularly important).681

ROC curves are another tool to analyze the success of682

a CNN. This type of curve shows the true positive rate683

(completeness) against the false positive rate. The goal684

is to increase the area under the curve, meaning that685

there are more true positives and fewer false positives.686

A model in which the network is guessing randomly each687

time will have an ROC curve with a diagonal line with688

a slope of 1. A perfect network has area under the curve689
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of 1, and a completely random one has area under the690

curve of 0.5.691

A trustworthy neural network must be both accurate692

and appropriately confident in its predictions. To ex-693

amine the confidence of a neural network, we use two694

calibration tools. First, we use the Brier Score (Brier695

1950). The Brier score is a measurement of “how cor-696

rect” a prediction is. For binary classification, it is de-697

fined as:698

Brier Score =
1

N

N∑
t=1

(pt − ot)
2
, (4)

where N is the number of galaxies in the test dataset,699

pt is the probability assigned to each galaxy by the neu-700

ral network (the value following the softmax activation701

function, which always lies between 0 and 1), and ot702

is the final class (1 or 0 corresponding to merger or703

nonmerger with a cutoff score of 0.5) assigned to each704

galaxy. A Brier score is always between 0 and 1 be-705

cause it is a mean of squared differences between out-706

put probabilities and predicted classes. A lower Brier707

score indicates a network that is making accurate and708

well-calibrated predictions, as there is less of a difference709

between the probability and the final classification.710

The second calibration metric we use is the Expected711

Calibration Error (ECE; Naeini et al. 2015). ECE mea-712

sures a weighted average of the difference between the713

accuracy and predicted probabilities. ECE is defined714

by splitting the dataset into M equally spaced bins and715

calculating a weighted average of the difference between716

the accuracy and output probabilities in each bin.717

ECE =

M∑
m=1

|Bm|
N

|acc (Bm)− p (Bm)| , (5)

where N is the total number of galaxies in the test set,718

Bm is the number of galaxies in the mth bin, acc is the719

accuracy, or percentage of correctly classified galaxies,720

in each bin, and p is the predicted probability (output721

from softmax) of the CNN in each bin. A lower ECE722

indicates a smaller difference between the accuracy and723

probability in each bin. This is the desired outcome for724

a well-calibrated network. We can visualize this differ-725

ence through a reliability diagram (DeGroot & Fienberg726

1983; Niculescu-Mizil & Caruana 2005). These diagrams727

show the accuracy in each bin as a function of the prob-728

ability in each bin. A perfectly calibrated model would729

have no difference, or “gap”, between the accuracy and730

probability, and thus would plot a 1:1 line. The dif-731

ference from a 1:1 line shows the miscalibration of the732

network.733

3.3. CNN Interpretability734

Going beyond the more standard metrics, we use735

Gradient-weighted Class Activation Mapping (Grad-736

CAM; Selvaraju et al. 2020), an XAI technique that737

highlights sections of an input image that are important738

to the final prediction. Grad-CAM uses gradients from739

the final convolutional layers to highlight these influ-740

ential regions so that they contain spatial information741

before it is lost in the fully connected layers. Under-742

standing where in the image our CNN is basing its deci-743

sions can help us build trust in the model, both showing744

when it perceives an image “correctly”, and to see why745

it makes an incorrect decision when it does. Often, the746

decisions make sense when we can see what the CNN747

focused on. Grad-CAM can be activated to either the748

merger or nonmerger class for any input image. Acti-749

vating a specific class shows which pixels are influential750

to that class, and not to other classes.751

Finally we apply Uniform Manifold Approximation752

and Projection (UMAP; McInnes et al. 2020), a dimen-753

sionality reduction method. We use it to visualize the754

high dimensional latent space of a fully connected layer755

in the CNN in only two dimensions. Galaxies that the756

network deems similar will lie close to each other in757

UMAP space, and galaxies that the network deems dif-758

ferent from each other will lie far apart. We can use the759

UMAP distribution along with the physical quantities760

associated with each galaxy (e.g., stellar mass, merger761

stage, SFR) to investigate how the network related dif-762

ferent galaxies.763

4. RESULTS764

We present our CNN training metrics and results765

when the model is applied to our test set. We train766

our model with 3 different random seed initializations767

and present the mean and standard deviations of dif-768

ferent performance metrics for our test set in Table 1.769

Accuracy, purity, and completeness are all ∼ 73%, with770

the Brier score and ECE being low and indicating good771

calibration overall of our models. When presenting per-772

formance of an individual model (in the text and figures773

in the following sections), we use Seed 626, since that774

seed had the highest overall accuracy.775

4.1. Model Performance and Calibration776

The loss and accuracy curves for one of our models777

(Seed 626) can be seen in Figure 3. We use the weights778

from epoch 43, the epoch with the lowest validation ac-779

curacy before overfitting occurred, as out final model.780

The confusion matrix for this model our test set is shown781

in Figure 4. The overall accuracy of this model is 73%,782

with a completeness also of 73%. The majority of our783
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Accuracy Purity Completeness Brier Score ECE AUC

73.02± 0.41% 74.0± 0.01% 72.0± 0.01% 0.19± 0.01 0.08± 0.03 0.8± 0.01

Table 1. Accuracy, Purity, Completeness, Brier Score, ECE, and AUC for our model. The values shown are the mean and
standard deviation of the three random seeds.

Figure 3. The loss and accuracy curves for our network.
The small data set size leads to the bumpier curves, es-
pecially in the validation set shown in the orange dashed
line. Though the training set curves in solid purple contin-
ued to improve, the validation set curves plateaued, so we
implemented early stopping to avoid overfitting. We use the
weights from epoch 43 as our best model, noted by the grey
dashed line.

Figure 4. The confusion matrix of our Seed 626 network
showing that we do classify the majority of galaxies correctly.
The darker squares along the diagonal show the galaxies clas-
sified correctly.

galaxies are classified correctly, but about a quarter of784

each class are not. We discuss possible sources of mis-785

classifications in Section 4.3.786

Our network’s ROC curve for Seed 626 is shown in787

Figure 5. It performs better than a random classifier,788

seen by our purple line above the grey dashed (random)789

Figure 5. The receiver operating characteristic curve for
our test set in Seed 626. The better the network performs,
the closer the AUC is to 1. The grey dashed line indicates a
network that randomly guesses each time, with an accuracy
of 0.5.

Figure 6. Calibration curve of our Seed 626 network with
the test set data. The Brier score and ECE, in addition
to the overall accuracy, are denoted in the top center. A
perfectly calibrated network would have all bins lying along
the 1:1 dashed line.

line. The area under the curve AUC = 0.80. We use the790

default decision threshold of 0.5 (i.e. a predicted proba-791

bility of more than 0.5 is a merger, and equal to or less792

than 0.5 is a nonmerger) throughout our analysis. The793

colorbar in Figure 5 shows what changing that decision794

threshold does to the true and false positive rates.795
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In addition to simple metrics like accuracy, we also796

implement two calibration metrics and plot a calibra-797

tion curve for our CNN in Figure 6. The Brier score of798

our network is 0.19, and the ECE is 0.08. Overall, the799

network is not severely miscalibrated.800

4.2. Effects of Orientation Angle, Merger Mass Ratio,801

and Stellar Mass802

Figure 7. Box plot showing the number of angles (out of 6
possible angles) for which each merger was correctly classified
as a function of the merger mass ratio in Seed 626. A box
plot extends from the first quartile to the third quartile of the
data, with the solid line marking the median. The whiskers
extend to 1.5 times the range of the first to third quartile.
The empty circles are any points not included in the range
of the whiskers. The black dotted line marks µ = 0.25, the
divider between a minor and major merger. The bottom,
lightest box shows that very few galaxies are misidentified
from every angle.

To understand where the network performs well and803

where it does not, we seek to understand the effects of804

orientation angle, specifically in tandem with the merger805

mass ratio and stellar mass. Even a merger that is clear806

from one angle, perhaps a face-on disk with clear tidal807

tails, may look like a nonmerger from another. Each808

galaxy is viewed from 6 angles, so we now look at how809

many angles each galaxy in the test set was correctly810

classified from. For the entire sample as a whole, the811

mean and standard deviation of the number of angles812

correct per galaxy for our highest performing random813

seed is 4.4 ± 1.8, with a median of 5. However, con-814

sidering how varied the galaxies in our sample can be,815

we break this down into more detail for the best model816

(Seed 626).817

We start by examining only the mergers. We show818

in Figure 7 the number of angles for which a galaxy819

was correctly identified relative to its merger mass ratio.820

The distributions in these bins (the number of correctly821

classified angles) are shown with box plots, in order to822

demonstrate the spread. Box plots show the middle 50%823

of data inside the box, with the whiskers extending to824

the farthest datapoint within 1.5 times that range. The825

outliers on these plots are galaxies with a mass ratio826

much higher than the bulk of the galaxies in that bin,827

simply indicating that mass ratio is more rare.828

Encouragingly, only four merging galaxies were classi-829

fied incorrectly every time (the lowest bin on Figure 7).830

Almost every merger that was classified as a nonmerger831

from all six viewpoints was a minor merger. Despite832

that, we also see that plenty of minor mergers are identi-833

fied often, if not from every angle. We conclude that ob-834

servation angle does affect our ability to identify merg-835

ers, especially minor mergers. If observation angle was836

not a factor, we would only see galaxies being correctly837

identified from no angles or every angle. Instead, we see838

many galaxies that are correctly classified at most an-839

gles, but not all. This gives us a better understanding840

of how many mergers we may be missing when these841

networks are applied to real data, assuming we miss a842

similar percentage due to observation angle.843

We next examine the relationship between the stellar844

mass of a galaxy and how many angles the network could845

correctly classify it from. In Figure 8, we look at both846

mergers (top figure) and nonmergers (bottom figure). It847

may be initially surprising that many high mass galaxies848

are often misclassified, since a larger mass could make849

a merger easier to see, but a large, spheroidal galaxy850

undergoing a merger, especially a minor one, could eas-851

ily completely obscure its companion from some angles.852

Additionally, we note that there are far more low-mass853

galaxies than high-mass galaxies in our sample. Non-854

mergers with M⋆ > 1010M⊙ tend to be classified cor-855

rectly more often than the high mass mergers, as seen856

by the longer whiskers on the top box on the nonmerg-857

ers’ plot. Nonmergers are classified correctly across all858

masses, but in contradiction to the mergers, if they are859

misclassified it tends to be at low stellar masses. Many860

merger studies are only able to consider high mass galax-861

ies, so it is encouraging that with enough spatial resolu-862

tion, we do have tools to identify at least a fraction of863

lower mass mergers, even at z ∼ 1.864

We next ask the question, does our network perform865

equally well on each type of merger in our merging sam-866

ple? We include multiple merger stages in our sample.867

The earliest mergers are still recognized as two separate868

subhalos by the TNG merger trees, and the latest stage869

mergers are after coalescence into one subhalo. We also870

include both major and minor mergers. Our breakdown871

of merger type and accuracy can be seen in Table 2.872
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Accuracy

All Mergers Major Minor Early Stage Late Stage Nonmergers

71.85± 0.97% 75.77± 0.82% 68.3± 0.66% 79.63± 0.74% 66.0± 0.01% 74.0± 0.01%

Table 2. The accuracy for our model, broken down by different types of galaxies. The values shown are the mean and standard
deviation from our three random seeds.

Figure 8. Box plot similar to Figure 7 showing the number
of angles for which a galaxy was classified correctly for a
range of stellar masses. The distributions for the mergers
are shown on top, and the nonmergers on the bottom. A
higher stellar mass did not automatically mean the galaxy
was easier to classify, as seen by the outlier circles. The high
mass nonmergers were easier to classify than the high mass
mergers, seen by fewer cirlces on the bottom right of the
bottom plot than the top.

One would expect the major mergers to be easier for873

the network to identify than the minor mergers, as major874

mergers tend to lead to large-scale disruptions of mor-875

phology. Minor mergers, on the other hand, may not876

have much of an effect on the morphology of the larger877

galaxy. However, identifying minor mergers is a cru-878

cial step in understanding how galaxies evolve and grow879

(e.g., Newman et al. 2012; Kaviraj 2014; Martin et al.880

2018. We find that our network performs similarly on881

major mergers and minor mergers. This is optimistic882

for our chances at identifying minor mergers going for-883

ward, even at z > 1. CNNs prove to be a useful tool884

in identifying minor mergers that the human eye and885

nonparametric methods may miss.886

The network identified early stage mergers more ac-887

curately than late stage mergers. We expect early stage888

mergers that still have two obvious bulges and may889

maintain some organized structure before they truly890

encounter the other galaxy in the merger to be easier891

to classify. However, multiple papers have found that892

CNNs can be successful at finding post-merger galaxies893

at z < 1 (e.g., Bickley et al. 2021; Ferreira et al. 2024b;894

Bickley et al. 2024). This points towards a combina-895

tion of machine learning and more traditional methods896

like spectroscopic close pairs (e.g., Duncan et al. 2019)897

to be a promising way to identify all mergers, even at898

high redshift. The benefit to CNNs is that photometry899

is faster and cheaper than spectra. Additionally, CNNs900

will be key in analyzing the volume of data coming from901

large imaging survey telescopes.902

4.3. Understanding Misclassifications903

In Figure 9 we show example galaxies and their Grad-904

CAMs set up in the same layout as a confusion matrix.905

For each example, the input galaxy image is on the left,906

the Grad-CAM with class “merger” activated is in the907

center, and the Grad-CAM with class “nonmerger” ac-908

tivated is on the right. The true positives are on the di-909

agonal, with the misclassifications on the off-diagonals.910

When discussing Figure 9, activating a class refers to911

asking the network to highlight which pixels are impor-912

tant for that class. We can see that in most cases when913

activating the Grad-CAM for the unpredicted class, the914

edges tend to be highlighted, and when we activate the915

Grad-CAM for the predicted class, it tends to highlight916

the galaxy at the center. This is promising, showing917

that even when the network makes an incorrect classifi-918

cation, it is often still making its decision on the physical919

features of the galaxy. The Grad-CAMs are not differ-920

ent enough between classes to draw conclusions about921

specific image features, but do offer confidence that the922

network has learned not to focus on background noise or923

sources, as seen in the bottom figure of the top left true924
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Figure 9. Visual confusion matrix of galaxies in the test set. True negatives are in the upper left, and true postives are in the
lower right. The contours are 3σ and 5σ overlayed simply to guide the eye to where the structure is in the Grad-CAM images.
The left image is the input image, the middle is the Grad-CAM with class “merger” activated, and the right is the Grad-CAM
with class “nonmerger” activated. The class that the network predicted is boxed in green. The Grad-CAMs show that the
network focuses on the galaxy when making its prediction, but does not highlight specific morphological features.

negative quadrant, an important quality of successful925

merger identification using CNNs (Bottrell et al. 2019).926

We can also see in this image that the misclassifica-927

tions often make sense to the human eye. The false nega-928

tives are seen in the lower left. The top image has a cen-929

tral structure but is overall quite smooth, with no obvi-930

ous secondary bulge. The false negative quadrant shows931

a lack of extended features, with only one bright nucleus.932

Though the galaxy appears to have some structure from933

the contours the single bright nucleus and clean back-934

ground make sense for why this merger was misclassified935

as a nonmerger. The top right corner represents false936

positives. Both of the galaxies shown here exhibit ex-937

tended features and clumpy structures. Inspecting by938

eye, it is easy to see how the network thought both of939

these galaxies could be mergers with the multiple bright940

patches and clumpy structures.941

UMAP (McInnes et al. 2020) is a non-linear, dimen-942

sionality reduction technique that we use to visualize the943

latent space of a CNN. On Figure 10, we show UMAPs944

of the test set images with colors representing values of945

different physical quantities of the galaxies. The merg-946

ers (circles) primarily reside on the left of the UMAP,947

and nonmergers (triangles) on the right. However, there948

is a lot of overlap in the middle. There is a clump of949

points sitting to the bottom of the main distribution, in950

which both mergers and nonmergers reside. When in-951

specting these galaxies by eye, we find they happen to952

be images with no background sources in the CANDELS953

background cutout and appear very smooth. It makes954

sense that these few galaxies are dissimilar to the rest955
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Figure 10. UMAPs of the test set color-coded by stellar mass (left), and specific star formation rate right. The true nonmergers
are triangles and the true mergers are circles. We exclude axes because the important information in a UMAP is in the relative
distance between points and clustering patterns, not in absolute distances. There are clear trends with both stellar mass and
star formation rate, showing that the network picks up on these quantities even with no input information about them.

of the dataset which includes background galaxies and956

noisy cutouts.957

We see a clear gradient in the UMAP when colored by958

the stellar mass of each galaxy (left plot on Figure 10).959

The low-mass galaxies are on the bottom of the UMAP,960

with stellar mass increasing towards the top. No stellar961

mass information was provided during training, but the962

network was able to recognize this physically meaningful963

quantity. There is again a clear gradient in the UMAP964

when colored by specific star formation rate (right plot965

of Figure 10). Similarly to stellar mass, the lower sSFR966

galaxies are on the bottom, and sSFR increases towards967

the top, even though no sSFR information was input to968

the model. The exception is extremely low sSFR, which969

is more scattered throughout. Because of this gradient,970

we speculate some of the nonmergers misclassified as971

mergers may be due to high, clumpy star formation,972

likely in the nonmergers seen in the top left. There were973

no obvious trends for UMAPs relative to the merger974

stage or merger mass ratio.975

To further investigate our speculation from UMAP,976

we plot the specific star formation rates in Figure 11.977

The nonmergers incorrectly classified as mergers had a978

higher mean sSFR than the correctly classified nonmerg-979

ers (dotted and dashed lines on the left plot, respec-980

tively). The mergers incorrectly classified as nonmerg-981

ers had a lower mean sSFR than the correctly classified982

mergers (dotted and dashed lines on the right plot, re-983

spectively). This agrees with what the UMAPs showed:984

the trend with sSFR could account for many of the985

misclassifications. The network may have learned that986

mergers tend to have higher sSFRs than nonmergers, or987

picked up on a feature in the image correlated to sSFR,988

leading to this result.989

5. DISCUSSION990

5.1. Comparison to Other Studies991

Galaxy merger identification is an inherently diffi-992

cult task. Many methods have been developed for this993

task, from visual identification to non-parametric meth-994

ods such as CAS and Gini-M20. These non-parametric995

methods are designed to quantify the distribution of996

light in an image, for example, where the light is con-997

centrated and the range of galaxy brightness throughout998

the image, into a single value. The threshold value sep-999

arates mergers and nonmergers. These statistics alone1000

can only capture ∼ 50% of mergers, but when combined1001

can be incredibly powerful (Nevin et al. 2019; Snyder1002

et al. 2019; Wilkinson et al. 2024).1003

For example, Nevin et al. (2019) successfully classify1004

mock SDSS mergers and nonmergers with linear dis-1005

criminant analysis (LDA). They achieve accuracies of1006

85% for major mergers and 81% for minor mergers.1007

Wilkinson et al. (2024) builds on this result, creating1008

mock galaxy images at z < 0.2 with spatial resolu-1009

tions varying from lower than SDSS to higher than Ru-1010

bin ten year co-adds, applying non-parametric methods,1011

and additionally combining them with LDA and random1012

forest methods. Even for their pristine imaging (be-1013

fore downgrading resolution with atmospheric blurring1014

and sky noise), single non-parametric statistics provide1015

maximum completeness (number of true mergers iden-1016

tified correctly/number of total mergers in the sample)1017

of only ∼55%. This increases to 73% with an LDA,1018

and 86% with a random forest. Random forests have1019

also been used for higher-redshift samples. At a red-1020

shift of z = 4, Snyder et al. (2019) achieves a ∼70%1021

completeness for mock HST and JWST images, roughly1022
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Figure 11. Left: sSFRs of nonmergers that were classified correctly as nonmergers in orange and incorrectly classified as mergers
in purple. Right: sSFRs of mergers that were correctly classified as mergers in purple and incorrectly as nonmergers in orange.
The dashed and dotted lines represent the mean of the correct and missclasified distributions, respectively. The incorrectly
classified nonmergers have higher sSFRs than the correctly classified images and vice versa for the incorrectly classified mergers.

twice that when only using two non-parametric statis-1023

tics (Gini - M20 or C-A). All three of these works use1024

galaxies with M⋆ ∼ 1010M⊙. From 0.5 < z < 4, the1025

random forest in Rose et al. (2023) applied to galaxies1026

with 105M⊙ < M⋆ < 1012M⊙ attains an accuracy of1027

∼60% on mock JWST CEERS imaging. They extend1028

this result to 4 < z < 5 in Rose et al. (2024) and cor-1029

rectly classify 59% of nonmergers and 67% of mergers.1030

Many works have shown that CNNs are successful at1031

classifying galaxy mergers and often outperform non-1032

parametric methods and LDA and random forest at1033

higher redshifts. With M⋆ > 1010M⊙ at z ∼ 0.01, Pear-1034

son et al. (2019) classifies mergers and nonmergers in1035

simulated SDSS images from the EAGLE simulation,1036

achieving only 65.2% accuracy. They discuss that the1037

simulation includes a more complete sample of mergers,1038

not just those easy to identify by eye. Therefore, it is1039

by default a harder task for the CNN than identifying1040

mergers in SDSS observations that were also visually1041

identified, where they achieved 95.1% accuracy.1042

Mergers and nonmergers around cosmic noon were1043

first classified with a CNN in Ćiprijanović et al. (2020),1044

who used mock images at z = 2 from the original Illus-1045

tris simulation. They showed that adding noise to im-1046

ages does decrease accuracy (79% accuracy on pristine1047

images and 76% on noisy images), but noise is a key as-1048

pect for realistic mock images. Their Grad-CAMs high-1049

lighted larger areas of the image for the merger class and1050

focused on more compact regions for nonmergers. Rel-1051

evant for this work, Ćiprijanović et al. (2020) uses the1052

same 500Myr merging window as our work here. How-1053

ever, their stellar mass lower limit is M⋆ = 109.5M⊙.1054

They note that most of their misclassifications are com-1055

ing from the low mass end of their sample. Our sample1056

stretches to even lower stellar masses, so stellar mass1057

may be responsible for some of our misclassifications (see1058

Section 4.3).1059

CANDELS galaxies with M⋆ > 1010M⊙ have been1060

classified out to z = 3 (Ferreira et al. 2020). That mass1061

limit was specifically chosen to use with the largest box1062

size of TNG, TNG300, in order to maximize training set1063

size. They achieve 87% accuracy on pre-mergers, 78% on1064

post-mergers, 94% on nonmergers. It is mentioned that1065

the spatial resolution in CANDELS is higher than that1066

of some of their mock images, due to the simulation’s1067

spatial resolution. Our work uses the smaller box, but1068

higher resolution run of TNG50, and thus we stretch to1069

galaxies with stellar masses down to 100 times smaller.1070

That wider mass range comes with a drop in overall1071

accuracy.1072

Pushing past cosmic noon, Rose et al. (2024) classi-1073

fies mergers and nonmergers in CEERS with mock im-1074

ages from TNG100. Different from other works, their1075

test set of mock images is unbalanced, with far more1076

nonmergers than mergers, to better represent the real1077

universe. They split their data into three redshift bins1078

between 3 < z < 5 and achieve ∼ 60 − 70% accura-1079

cies in all of them. Their mass range stretches to even1080

lower masses than this work, with galaxies included at1081

M⋆ > 107M⊙. The Grad-CAMs of these mock JWST1082

galaxies do not show clear patterns when all six filters1083

are included. They note they see evidence of the network1084

focusing on the galaxy in some single filter Grad-CAM1085



16 Schechter et al.

images, but the activation in other images are seemingly1086

random.1087

5.2. Why Do CNNs Struggle with Merger1088

Identification?1089

We showed that CNNs can find non local (z ∼ 1)1090

mergers at low mass ratios (µ > 1 : 10) and low stellar1091

masses (M⋆ > 108M⊙) when enough training examples1092

are provided. TNG50 provides a high resolution train-1093

ing set enabling this classification. While the network1094

in this paper outperforms any previous CNN at this low1095

mass range, it still misclassifies some galaxies. We now1096

explore what makes merger identification an inherently1097

difficult task, especially at z > 1. First we discuss the1098

morphology of galaxies in combination with image reso-1099

lution and depth. We then focus on the effect of viewing1100

orientation and the inherent ceiling on merger identifi-1101

cation.1102

5.2.1. Impact of Morphology and Image Quality1103

While a task like identifying two stellar bulges at low1104

redshift and high masses may be trivial for a CNN, dis-1105

tinguishing between clumpy star-forming regions and1106

two stellar bulges at higher redshifts and low masses1107

is not so trivial. Additionally, tidal features can be1108

key to distinguishing a merger from a clumpy, isolated1109

galaxy, but these features can be dim, especially com-1110

pared to the brightnesses of star-forming regions and1111

stellar bulges. Normalization of the images with a log1112

stretch does help this issue, ensuring that all pixel val-1113

ues are between 0 and 1 and the values are well dis-1114

persed within that range. With high spatial resolution1115

data from Roman, Rubin, JWST , and Euclid , merger1116

identification at high-z should become easier, provided1117

we create accurate training sets, and trust our ML al-1118

gorithms. Ensuring that the network can understand1119

the difference in these brightness scales and the phys-1120

ical features that they tie to requires many training1121

images. In our case, TNG50 did not include enough1122

mergers at M⋆ > 1010M⊙ for the network to under-1123

stand how to classify high-mass mergers. Conversely,1124

Margalef-Bentabol et al. (2024) did not include as many1125

M⋆ ∼ 109M⊙ galaxies as M⋆ > 1010M⊙ galaxies, and1126

their completeness scores were highly mass dependent1127

(see their Figure 8). Training a network with realistic1128

mock images improves performance on real data (Bot-1129

trell et al. 2019). In addition to supplying a deep net-1130

work with high-quality mock images, it is also necessary1131

to have an adequate number of training examples span-1132

ning different stellar masses, merger stages, and mass1133

ratios.1134

5.2.2. Impact of Viewing Angle on Accuracy1135

Orientation angle has a known effect on classifying1136

the morphology of galaxies. Extending this to mergers,1137

the orientation angle can make it easier or more diffi-1138

cult to visually identify a companion galaxy or merger.1139

Bickley et al. (2024) suggests that there may be an up-1140

per limit on the accuracy of a CNN for merger iden-1141

tification around 90 percent, partially due to orienta-1142

tion. They note that at some level, there is no way1143

to distinguish a clumpy nonmerger from a merger, or1144

to view every galaxy from a favorable angle. Wilkin-1145

son et al. (2024) conduct a thorough investigation of1146

the limitations of their merger identification scheme by1147

viewing angle. They classify a 3×1010M⊙ major merger1148

(µ = 0.26) viewed at 648 angles. They find for this easy-1149

to-identify major merger at z = 0.05 that ∼8% of the1150

viewing angles are unable to identify the merger, even1151

with their well trained LDA and random forest algo-1152

rithms.1153

This might be an inherent limit, and indeed our accu-1154

racy does not exceed ∼90%. When we account for the1155

fact that our sample is composed of lower mass (by up1156

to 100 times) and higher redshift (which has an effect on1157

image resolution) galaxies and mergers with larger mass1158

ratios (i.e. minor mergers), we should expect an even1159

lower accuracy upper limit. If this upper limit applies1160

to z < 1 galaxies, then the upper limit will undoubtedly1161

be even lower than 90% at z = 1− 1.5.1162

5.2.3. Impact of Star Formation1163

As seen in Figure 10, the CNN recognizes star forma-1164

tion to be important to its final classifications. With1165

the multiband images that the CNN is fed, it can learn1166

that a bluer galaxy, and thus a galaxy undergoing recent1167

star formation, is more likely to be a merger than a non-1168

merger. This could be seen as a drawback, and Bottrell1169

et al. (2019) use one band to specifically avoid the CNN1170

classifying bluer galaxies as mergers and instead force it1171

to classify based on morphology. However, we argue this1172

trend with star formation rate shows that CNN is learn-1173

ing something physically meaningful: a bluer galaxy is1174

more likely to be a merger than a nonmerger. Indeed,1175

the mass-matched mergers in our TNG50 dataset, on1176

average, have higher star formation rates than the non-1177

mergers (Schechter et al. 2025). Therefore, it makes1178

sense that the CNN would identify a bluer galaxy as a1179

merger more often.1180

We confirm in Figure 11 (left plot) that the nonmerg-1181

ers that are incorrectly classified have a higher mean1182

sSFR than the nonmergers that are correctly classified.1183

The right plot on Figure 11 shows that mergers misclas-1184

sified as nonmergers have a lower mean sSFR than the1185

mergers correctly classified, especially with a few low1186
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sSFR galaxies causing a longer tail of the missclassified1187

distribution.1188

In order to confirm that color information is not hin-1189

dering our model, we additionally ran two versions of a1190

greyscale CNN. One model was fed a single image that1191

summed the flux from all three filters in preprocessing,1192

and thus did not have the breakdown of astronomical1193

filters than the three channel CNN did. The other was1194

given a single filter F814W image. Both greyscale CNNs1195

had ∼ 10% lower overall accuracies than our main three1196

channel model. More nonmergers were misclassified as1197

mergers in the greyscale CNNs, leading to the decrease1198

in accuracy. Additionally, both greyscale models still1199

saw a gradient with sSFR in the latent space, implying1200

that the CNN was able to pick up on sSFR even without1201

astronomical filter information, purely from morphol-1202

ogy. Taking filters away did not decrease a reliance on1203

star formation, and appears to have removed some key1204

features the model used when separating mergers from1205

nonmergers.1206

5.3. Looking Ahead With Applications to Real Data1207

In this work we used fully radiative transferred images,1208

as it is important to train on mock images as similar to1209

real observations as possible (Bottrell et al. 2019). How-1210

ever, no matter how careful the mock image procedure1211

is, there will always be differences between mock images1212

and real data such as noise, image artefacts, and mor-1213

phology of galaxies depending on the simulation used1214

for training. Ćiprijanović et al. (2021) applied domain1215

adaptation techniques, which enable the network to find1216

and utilize similar features from the training domain1217

(mock images of simulated galaxies) and the target do-1218

main (real observations) i.e., domain-invariant features.1219

These techniques help overcome the limitation any dif-1220

ferences in the mock images and real observations. Since1221

radiative transfer is expensive, some papers opt to not1222

use radiative transfer with only a small reduction in ac-1223

curacy (e.g., Bottrell et al. 2019). At z > 1 we argue it1224

is important to use radiative transfer as dust is impact-1225

ing our observations and AGN, which can be very dusty,1226

are more common. In an upcoming paper, we will ex-1227

plore using domain adaptation in place of full radiative1228

transfer for merger classification with CNNs in order to1229

save computational time.1230

As we broach the high-z merger universe, we want to1231

build trust in our use of AI and understand where AI1232

cannot provide all of the answers. Using XAI techniques1233

is crucial as we are looking at imaging where there is1234

no obvious correct answer. Additionally, understanding1235

which galaxies cause miscalibration can provide insight1236

into which tasks ML is well-suited for and for which1237

tasks more classical methods may still be preferred. For1238

example, combining spectroscopic pairs for early-stage1239

mergers with CNNs for late-stage mergers can give a1240

more complete catalog of all mergers in a sample (Fer-1241

reira et al. 2024a). This also makes the CNN’s task eas-1242

ier, because it only has to learn what a late-stage merger1243

looks like, instead of generalizing to any stage of merger.1244

Knowing which tools to apply to which problems is cru-1245

cial as we enter an era of big data in astronomy.1246

UMAPs show us that the network is sensitive to the1247

stellar mass and star formation rates of the galaxies.1248

In the future, we could potentially improve performance1249

by combining galaxies with M⋆ < 109.5M⊙ from TNG501250

with a sample of galaxies with M⋆ > 109.5M⊙ from the1251

larger simulation box size, TNG100, to create a more1252

mass-balanced and larger training set. This would be1253

similar to the treatment in Margalef-Bentabol et al.1254

(2024), where authors combine TNG100 and TGN3001255

galaxies for their training set. Our nonmerger sample is1256

currently only mass-matched due to the small box size1257

of TNG50. To match in any other quantity required1258

widening the mass match threshold too much, due to1259

the small number of galaxies with M⋆ > 1010M⊙. How-1260

ever, if we draw high-mass galaxies from TNG100, we1261

could find SFR and mass matched nonmergers to try1262

to reduce misclassifications. This would also provide a1263

larger training set overall, which would be helpful since1264

our current training set is small by ML standards. With1265

a training set of similar numbers of major and high-mass1266

mergers as minor and low-mass mergers, we could po-1267

tentially improve the distinction between mergers and1268

nonmergers for all subcategories of galaxies.1269

6. CONCLUSION1270

We trained a CNN on mock HST CANDELS images1271

to identify galaxy mergers at 1 ≤ z ≤ 1.5. We used the1272

highest spatial resolution simulation in the TNG suite,1273

TNG50, enabling more detailed structures of galaxies1274

and galaxies of lower masses to be included in our train-1275

ing set. With mergers in stages from pre- to post-1276

coalescence, M⋆ > 108M⊙, and µ > 1 : 10, we suc-1277

cessfully classified less obvious galaxy mergers close to1278

cosmic noon. Our main results are as follows:1279

1. Our network was 73% accurate, and was able1280

to identify major mergers about 76% and minor1281

mergers about 68% of the time.1282

2. Early-stage mergers (two clear galaxies) were iden-1283

tified about 10% more often than late-stage merg-1284

ers (around coalescence).1285
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3. Orientation angle matters when searching for1286

mergers, as there are some angles where the1287

merger is unlikely to be correctly identified.1288

4. In order for a single model to accurately classify1289

galaxies in a wide range of stellar masses (e.g.,1290

∼ 108M⊙−1012M⊙), the training set must include1291

sufficient examples from the entire mass range1292

(even if that is not representative of the observed1293

galaxy mass distribution).1294

5. CNNs can learn that higher star formation is likely1295

to be in a merger, even with greyscale images.1296

SFR- and mass-matched training sets are needed1297

to confidently classify high star-forming, nonmerg-1298

ing galaxies or mergers between low star-forming1299

galaxies.1300

Accurately identifying galaxy mergers is a key step1301

in understanding how galaxies build stellar mass and1302

evolve in morphologies over time. To do this with large1303

imaging surveys we need trustworthy ML algorithms.1304

Understanding how to build better training sets and1305

where high-z merger identification is failing is crucial1306

as we step into the era of JWST , Roman, and Rubin.1307
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