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ABSTRACT

Galaxy mergers play an important role in many aspects of galaxy evolution, therefore, more accurate
merger identifications are paramount for achieving a complete understanding of galaxy evolution. As
we enter the era of very large imaging surveys, we are able to observe mergers extending to even lower
masses and higher redshifts. Despite low-mass galaxies being more common, many previous merger
identification methods were mostly calibrated for high-mass, local galaxies, which are easier to identify.
To prepare for upcoming surveys, we train a convolutional neural network (CNN) using mock HST
CANDELS images at z ~ 1 created from the IllustrisTNG50 cosmological simulation. We successfully
identify galaxy mergers between a wide range of galaxies (108My < M, < 10'25Mg), and p > 1 : 10),
achieving overall accuracy, purity, and completeness of ~ 73%. We show, for the first time, that a CNN
trained on this diverse set of galaxies is capable of identifying both major and minor mergers, early
and late stage mergers, as well as nonmerging galaxies, similar to that of networks trained at lower
redshifts and/or higher masses (with accuracies ranging between 66 — 80%). We discuss the inherent
limits of galaxy merger identification due to orientation angle and explore the confounding variables,
such as star formation, to consider when applying to real data. This network enables the exploration
of the impact of previously overlooked mergers of high mass ratio and low stellar masses on galaxy
evolution in CANDELS, and can be expanded to surveys from JWST, Rubin, Roman, and Fuclid.

Keywords: galaxy evolution — galaxy mergers

1. INTRODUCTION

Galaxy mergers are one of the main avenues for galax-
ies to evolve from clumpy, high-redshift galaxies into the
organized structures we see in the local universe, both
with large morphological changes due to major merg-
ers and building stellar mass through minor mergers
(e.g. Toomre & Toomre 1972; Mihos & Hernquist 1996;
Buitrago et al. 2013; Martin et al. 2018). Identifying
their role in galaxy evolution is a key task for observa-
tional astronomy, especially in the era of high redshift
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science with JWST (Gardner et al. 2006), and large as-
tronomical surveys and telescopes such as the Vera C.
Rubin Observatory’s (Rubin) Legacy Survey of Space
and Time (LSST; Ivezi¢ et al. 2019), Nancy Grace Ro-
man Space Telescope (Roman; Akeson et al. 2019), and
Euclid (Scaramella et al. 2022).

Though mergers are an influential process in galaxy
structures, they can prove tricky to identify. A galaxy
merger can take hundreds of Myr to a few Gyr, depend-
ing on factors such as mass ratio and orbital parame-
ters (Lotz et al. 2008). Merger stage can also compli-
cate merger identification, as the galaxies do not ex-
perience each stage for an equal amount of time, and
thus some stages are more common than others. There
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is a range of morphologies associated with each merger
stage, and thus the method used influences which merg-
ers are found and which are missed, as certain methods
are more sensitive to certain morphologies (Lotz et al.
2008).

Mergers experiencing their first pass (early stage) are
easier to identify than mergers experiencing the coales-
cence of the nuclei (late stage). The human eye is his-
torically trustworthy at identifying low-redshift, early-
stage mergers, especially when multiple people visually
inspect each image (e.g., Darg et al. 2010). Visual (i.e.,
"by-eye”, performed by scientists) classification efforts
have enabled huge amounts of science on the role of
mergers, but they have some drawbacks. First, it re-
quires many human hours. Some of this has been out-
sourced to citizen scientists with projects like Galaxy
Zoo (Lintott et al. 2008). A method that does not
require large groups of people spending hours of their
time to classify galaxies is more desirable. Second, the
human eye may struggle to capture a range of galaxy
mergers. Visual classification studies are biased to early-
stage, major (merger mass ratio p > 1 : 4) mergers, due
to these systems having obvious morphological distur-
bances and/or signatures of multiple galaxies, such as
two stellar bulges. Late-stage, minor mergers (mass ra-
tio 4 < 1 :4) may be missed since they can be mistaken
for isolated galaxies, not highly disturbed, or even just
visually overlapping galaxies.

These biases in visual classifications lead to the use of
quantitative imaging predictors such as the concentra-
tion (C), asymmetry (A), and smoothness (clumpiness)
(S) i.e., CAS parameters (Conselice 2003) and Gini-Msg
(Lotz et al. 2004). These non-parametric morphology
measurements are all based on various ways of measur-
ing distributions of light in images, often separating qui-
escent galaxies from star-forming galaxies, and more de-
fined morphologies from disturbed systems. Separating
those types of morphologies is extremely useful in iden-
tifying mergers. The merger stage and image quality
affect which method correctly identifies more mergers,
as morphological asymmetry is more accurate for merg-
ers in early stages, and Gini-Msyg is more successful with
mergers near the end of the process (Nevin et al. 2019;
Wilkinson et al. 2024). However, all of these methods
are calibrated on lower-z galaxies and may need to be
adjusted for high redshift galaxies.

Galaxies and galaxy mergers at higher redshifts, z,
look different than those in our local universe (Conselice
2014 and references therein). For example, galaxies at
z > 1 are often clumpier and contain more gas and dust
compared to low-redshift galaxies. The physical mor-
phology of high-redshift galaxies could make it harder
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to identify mergers visually, since the clumpy, uneven
structure could make these galaxies appear to be merg-
ing even when they are actually isolated. These galaxies
are also often smaller than their present-day counter-
parts. Therefore, how we identify low-redshift mergers
may need to be different from how we identify high-
redshift mergers. There have been by-eye classification
efforts out to z ~ 7(Kartaltepe et al. 2015; Simmons
et al. 2017; Willett et al. 2017; Smethurst et al. 2025),
though not all by-eye classifications can identify merg-
ers.

Convolutional Neural Networks (CNNs) are a type of
neural network for working with imaging data. Their
ability to extract useful features from images (even those
that might not be obvious to the human eye) makes
them a promising tool with which to identify galaxy
mergers. Many studies have successfully shown that
CNNs outperform both by-eye identification and Gini-
Myo/CAS at z < 1 (Bickley et al. 2021; Ackermann et al.
2018). By using machine learning rather than visual by-
eye identification, we avoid biases humans may have of
identifying only more obvious mergers, such as a merger
between two large spiral galaxies. Additionally, CNNs
are much faster than human identification, which is an
increasingly important consideration as we prepare for
large observational survey telescopes.

When considering CNNs as a merger identification
tool, it is important to take into account that CNNs; as
any other machine learning model, can only learn from
the information contained in the training set. There-
fore, which mergers astronomers decide to include in
their training set dictates which masses, mass ratios,
and merger stages the CNN will be most likely to find.
CNNs have been commonly trained on samples of galax-
ies that are identified by eye, both by citizen scientists
and by experts. Many papers have used the Galaxy Zoo
data to train or test the performance of their network to
identify galaxy morphologies (e.g., Dieleman et al. 2015;
Dominguez Sanchez et al. 2018; Cavanagh et al. 2021).
However, Bickley et al. (2021) showed that compared
to CNNs, visual inspection can often lead to many dif-
ferent classifications of any given galaxy depending on
the training of the individual performing the classifica-
tion. Therefore, it is becoming more common to train
networks on mock images of simulated galaxies because
this ensures that the mergers/nonmergers used in the
training set are known a-priori.

Mock images from the IllustrisTNG cosmological sim-
ulation suite (Marinacci et al. 2018; Naiman et al. 2018;
Nelson et al. 2018; Pillepich et al. 2018; Springel et al.
2018) are a common choice for a training set due to
TNG’s wide range of galaxy morphologies and match
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of observational galaxy properties at z = 0. Many pa-
pers choose to make mock images from TNG100-1 or
TNG300-1, with the ~ 100Mpc per side and ~ 300Mpc
per side boxes respectively, and use neural networks
to classify mergers (Bickley et al. 2021; Bottrell et al.
2022; Ferreira et al. 2022; Avirett-Mackenzie et al. 2024;
Margalef-Bentabol et al. 2024; Ferreira et al. 2024b).
The highest spatial resolution run of TNG, TNG50
(~ 50Mpc per side box; Nelson et al. 2019; Pillepich
et al. 2019), was used as the training set in Omori et al.
(2023). The TNG100 and TNG300 boxes contain sig-
nificantly more volume than the TNG50 box, and thus
enable much larger training sets of mergers and non-
mergers. These works show that machine learning com-
bined with TNG can be successful at identifying merg-
ers at both early and late stages at lower redshifts z < 1
and higher masses M, > 109 Mg, for a variety of mocked
imaging surveys. Pearson et al. (2019) also showed suc-
cessful ML, merger identification with with the EAGLE
simulation (Crain et al. 2015; Schaye et al. 2015), and
Dominguez Sdnchez et al. (2023) with the Horizon-AGN
simulation (Kaviraj et al. 2017).

Along with the use of neural networks, recent years
have witnessed an explosion in the field of eXplainable
aritificial intelligence (XAI), which seeks to promote
interpretability in machine learning tools (see Arrieta
et al. 2019 for a review). Pixel attribution methods such
as saliency maps (Simonyan et al. 2013) and Gradient-
Weighted Class Activation Mapping (Selvaraju et al.
2020) highlight specific pixels and regions of an input
image that the CNN relied on for its final classification.
Additionally, inspecting feature maps from hidden layers
can also provide physical intuition into why the network
makes the decisions it does. This makes CNNs less of
a black box and more useful for astronomical purposes.
Ciprijanovi¢ et al. (2020) identified merging galaxies at
z = 2 in the original Illustris (Vogelsberger et al. 2014)
simulation with a CNN for the first time. They used
XATI to show that when identifying mergers, their CNN
focused on larger areas of the image that contained faint
substructures of a galaxy, but when identifying non-
mergers, the influential pixels were in a more compact
area. This provided insight into what physical processes
the galaxy images contained that the network observed
to make a decision between merger and nonmerger.

Using a galaxy merger sample from IlustrisTNG50,
we create mock galaxy images from the HST CANDELS
survey (Koekemoer et al. 2011; Grogin et al. 2011). This
survey has some overlapping wavelength coverage with
Roman, but since the data are already public, it has the
benefit of creating mock images with real backgrounds
instead of simulated background noise. We want to
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study mergers around cosmic noon (1< z <3), the peak
of morphological evolution, for which CANDELS pro-
vides a large sample of galaxies. CANDELS is > 90%
complete at z <3 (Guo et al. 2013; Mantha et al. 2018).

In this paper, we use extremely realistic, fully ra-
diatively transferred mock HST images from Illus-
trisTNGH0 to classify mergers in optical and infrared
filters at 1 < z < 1.5. We include galaxies down to
M, = 108Mg, while still including mass ratios down
to 1:10 and multiple merger stages. We aim to create a
trustworthy classifier to find mergers at high-z and lower
stellar masses with JWST, Rubin, Roman, and FEuclid
with the help of a high resolution simulation and XAI
interpretation.

Our merger selection from TNG and mock image pro-
cess is discussed in Section 2, the CNN architecture, per-
formance evaluation metrics and model interpretability
are discussed in Section 3, the performance of our CNN
is discussed in Section 4, and a discussion of the lim-
itations of our sample and model is in Section 5. We
use the Planck cosmological parameters (Planck Col-
laboration et al. 2016), the same ones used by Illus-
trisTNG: a matter density Q,, = Qgm + 2 = 0.3089,
baryonic density 2, = 0.0486, cosmological constant
Qa = 0.6911, Hubble constant Hy = 100h km s—!
Mpc~! with kA = 0.6774, normalization og = 0.8159 and
spectral index ng = 0.9667.

2. DATA

To quantify the role of mergers in processes at cosmic
noon (1 < z < 3) such as galaxy morphological evolu-
tion, cosmic star formation, and black hole activity, a
reliable classifier that can separate mergers from non-
mergers at low masses, including among peculiar (not
spiral or elliptical) galaxies is necessary. Therefore, we
aim to build a CNN that is able to identify both major
and minor mergers, mergers at early and late stages, and
mergers between galaxies with M, > 108My at z ~ 1.

We create a dataset of mock HST imaging with galax-
ies in the 1 < z < 1.5 redshift range. This redshift range
is the highest redshift where spiral and elliptical galaxies
are each about as common as peculiar galaxies (which
would include mergers; Buitrago et al. 2013). Above
this redshift, the universe has a different makeup than
it does locally, with peculiar galaxies being much more
prevalent, especially among low mass galaxies (e.g., Fer-
reira et al. 2023). Additionally, we know minor mergers
are an important avenue for galaxies to build up stellar
mass over cosmic time, and that low mass galaxies are
more common at higher redshifts (Martin et al. 2018).
However, peculiar galaxies dominate at M, < 10%5Mg
(Conselice et al. 2008).



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

208

299

300

301

302

303

304

305

306

307

308

309

310

311

4 SCHECHTER ET AL.

The HST CANDELS survey is the basis for our
mock images due to its high spatial resolution, cover-
age around the peak of cosmic star formation, and, im-
portantly, existing catalogs with which to compare our
results and build additional trust in our model before
applying to newer surveys. In order to train a success-
ful network we need a highly realistic training set that
includes galaxy mergers with these mass ratios, merger
stages, and stellar masses. We use galaxies from the
TNG50 cosmological simulation as our training set. We
want to use high-resolution simulations and images like
those from TNG50 (with a median spatial resolution
of ~0.1kpc, which is comparable to or better than the
resolution of CANDELS images at z > 0.2) for the
merger identification process to be sure the CNN can
separate small, clumpy, isolated galaxies from merging
galaxies. Using mock images from TNG50 will also pro-
vide a strong training set since we will know the true
classification of each galaxy, allowing our tool to be bet-
ter trained at identifying mergers close to cosmic noon.
We create mock images in three HST filters (F814W,
F160W, and F606W) for a three channel CNN. This
section describes the merger selection process from the
simulation, and how we go from the simulated galaxies
to fully realistic mock images.

2.1. Cosmological Simulation and Galaxy Selection

MustrisTNG is a suite of cosmological magnetohy-
drodynamical simulations spanning 0 < z < 127 with
improved physics from the original Illustris simulation
(Vogelsberger et al. 2014). It comes in three box sizes,
the largest being TNG300 at roughly 300Mpc/side and
the smallest, highest resolution run, TNG50, at roughly
50Mpc/side (Nelson et al. 2019; Pillepich et al. 2019).
All volumes have both “dark matter only” and “baryonic
physics” runs. The IllustrisTNG model includes physi-
cal processes such as gas cooling (primordial and metal-
line), star formation, supermassive black hole formation
and mergers, chemical enrichment from supernovae, stel-
lar and black hole feedback, and cosmic magnetic field
evolution, all of which impact galaxy morphologies and
evolution. This self-consistent simulation enables us to
investigate how morphologies change over time and how
this may affect merger identification techniques at dif-
ferent redshifts.

IlustrisTNG has “full” and “mini” snapshots. Both
snapshots trace all of the same subhalos through cos-
mic time and include the full 50 co-moving Mpc/side
box. A “full” snapshot contains all of the physics that
TNG calculates, while the mini snapshots do not calcu-
late physics for all particle fields. Since we aim to run
radiative transfer, we only can only create images from
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snapshots that are “full”, which are necessary to make
the mock images described in Section 2.2. The redshift
bin centers of z = 1 and z = 1.5 are both “full” snap-
shots. Notable examples of outputs that are only in the
“full” snapshots are: magnetic fields, neutral hydrogen
density, dark matter density, and stellar metallicity.

The SUBLINK assembly history traces a subhalo back
in time and connects it to subhalos in previous snap-
shots (higher redshifts), that it evolved from. For a given
snapshots, we identify all subhalos with a stellar mass
greater than 1000 times the baryonic mass resolution of
TNG50, which is 8.5 x 10* M. We trace the subhalos
across cosmic time using the merger trees and merger
definitions from Rodriguez-Gomez et al. (2015), which
link the identities of a given subhalo to its progenitor
and descendant subhalos at the previous and following
snapshot, respectively. We define a merger as a subhalo
that has both a first and a next progenitor at the pre-
vious snapshot in time, where both progenitors share a
descendant history with the given subhalo and the first
progenitor is the subhalo with the more massive assem-
bly history. We additionally require that the stellar mass
ratio of the first and next progenitor be greater than 0.1
to include minor and major mergers.

We select mergers from TNG50 in two redshift bins
centered at z = 1 and z = 1.5. To identify mergers (and
nonmergers) for each redshift bin, we begin by iden-
tifying all snapshots that are within 250 Myr of the
bin center. At these redshifts, this is one mini snap-
shot on each side of the central full snapshot. There
are a few hundred independent mergers in each redshift
bin. We then find mass-matched nonmerging galaxies
by adapting the matching scheme from Bickley et al.
(2021), as described in Schechter et al. (2025). Each
merging galaxy is matched with a nonmerging galaxy in
the same snapshot by searching for a galaxy within a fac-
tor of ! and expanding the threshold by an exponen-
tial factor of 1.5 if a match is not found. No nonmergers
are used twice as matched galaxies. A nonmerger must
have not have merged within the past 2Gyr to be an
eligible match.

After following this procedure, relative to the central
full snapshot, we have galaxies that merged at the pre-
vious snapshot back in time (a mini snapshot), galax-
ies that merge at the center full snapshot, and we have
galaxies that will merge at the next snapshot forward in
time (a mini snapshot). Though we identify some merg-
ing one snapshot earlier or later, we trace them and
take their image from the “full” snapshot bin center in-
stead of the mini snapshot in which they truly merge.
That gives us different merger stages, as we are imaging
some galaxies pre-merging and post-merging. They are
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the true mergers one snapshot forward and backward in
time respectively, but are imaged at these pre or post
phases in full central snapshot.
consider the pre-merging galaxies our “pre-coalescence”
or “early-stage” galaxy merger sample since the merger
trees still identify two subhalos, and both the true
merger galaxies in the central snapshot and the post-
merging galaxies as “post-coalescence” or “late-stage”
mergers as the merger trees only identify one subhalo in
both of these stages. In our case, because we are using
theoretical definitions from the TNG merger trees, these
may not match exactly to observational merger stages
such as “first passage” or “nearing coalescence”.

The resultant sample contains 260 mergers and 260
mass-matched nonmergers at z = 1 and 446 mergers and
446 mass-matched nonmergers at z = 1.5. We combine
the two redshift bins into one dataset, and the distribu-
tions of stellar mass (left figure), merger stage, and mass
ratio (middle figure) are seen in Figure 1. The stellar
mass ranges from 1072 — 10'2-5M. The vast majority
of our galaxies have lower masses M, < 10°-5Mg, which
could make the classification task more challenging for
the CNN. However, we want to utilize the lower stellar
mass galaxies as well to get a full picture of the role
mergers overall play in galaxy evolution and cosmic star
formation, which the high resolution of TNG50 enables
us to do. All merger classes (pre-coalescence, merger,
and post-coalescence) are combined into one class of
“merger” for the CNN. The middle plot on Figure 1
is a stacked histogram, so the overall distribution is for
the entire merger class. The shading displays how the
stages are broken down relative to definitions in Section
2.1. The specific star formation rates (sSFRs) are shown
in Figure 1 (right plot), showing that the merging dis-
triubtion peaks at a slightly higher sSFR, than the non-
merging distribution. We show sSFR instead of SFR. to
remove the mass dependence of the star formation main
sequence. While our sample is mass matched, it is not
matched in SFR, due to the small box size. Matching in
both SFR and mass required expanding the mass match
threshold many times, so we elect to use a close mass
match and no SFR match.

For our analysis, we

2.2. Realistic Mock Images

We recognize that higher spatial resolution and deeper
imaging at z ~ 1 exists with JWST. We choose to use
CANDELS in this work in order to compare our up-
coming merger catalog (which will be the focus of our
future work) to existing merger catalogs created by non-
ML methods to build trust in our CNN. It also gives us a
baseline at optical wavelengths to compare to when ap-
plying to Rubin and Roman. Lastly, in order to not just
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identify mergers but draw statistical conclusions about
their role in galaxy evolution, we require a large sample
of observed galaxies, ideally with known stellar masses
and star formation rates. CANDELS provides a large
field, which JWST does not, with existing value-added
catalogs.

To train the CNN on IllustrisTNG50 images for this
goal, we must first make them as similar to real HST im-
ages as possible. Bottrell et al. (2019) investigated how
important realistic training images are to the final clas-
sifications of a CNN while using one to not only identify
mergers but also predict the merger stage. They found
that as long as a network is exposed to background noise,
other sources, and the spatial resolution of the telescope
in training, it is able to predict mergers accurately when
given real data. Notably, this paper discovered that re-
alistic environments are more important to accurate pre-
dictions than radiative transfer in making mock images
to train a CNN. Nevin et al. (2019) showed detailed steps
to create SDSS mock images to use for machine learning
and quantitative galaxy identification methods. To cre-
ate mock HST images, we will be adapting the method
used by Nevin et al. (2019).

2.2.1. Radiative Transfer with SKIRT

The first step to create realistic mocks is to post-
process TNG50 galaxies through full Monte Carlo con-
tinuum dust radiative transfer calculations, using the
publicly available code SKIRT (version 9; Baes et al.
2011; Baes & Camps 2015; Camps & Baes 2015, 2020).
We use the prescription described in Vogelsberger et al.
(2020) and Shen et al. (2020, 2022); Shen et al. (2024) ,
as done in Nevin et al. (2019).

In this prescription, stellar particles in the simulations
are assigned intrinsic emission using the stellar popula-
tion synthesis method. Specifically, we adopt the Flex-
ible Stellar Population Synthesis (Fsps) code (Conroy
et al. 2009; Conroy & Gunn 2010) to model the intrinsic
spectral energy distributions (SEDs) of old stellar par-
ticles with tage > 10Myr (using the MILES spectral
library and MIST isochrone library, this choice defines
solar metallicity, Z5) and the MAPPINGS-IIT SED li-
brary (Groves et al. 2008) to model those of young stel-
lar particles with tage < 10Myr. The MAPPINGS-IIT
SED library self-consistently considers the dust attenu-
ation in the birth clouds of young stars, which cannot be
properly resolved in the simulations. We employ a K-D
tree algorithm to calculate the smoothing length enclos-
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Figure 1. Left: Distributions of merging and nonmerging galaxies’ stellar masses. Center: Stacked histogram of merger mass
ratios in the merging sample color coded by merger stage as defined in Section 2.1. Right: Distributions of sSFR for mergers

and nonmergers.

ing 64 ! nearest stellar particles for all stellar particles
within the galaxy. Given the spatial location and the
smoothing length values of stellar particles, SKIRT then
creates a photon source distribution and emissivity pro-
file through the entire space by interpolating over these
kernels. At the beginning of radiative transfer calcula-
tions, photon packages are randomly released based on
the source distribution characterized in this way. Wave-
lengths from the Lyman edge out to optical and IR wave-
lengths included in CANDELS filters are covered. The
total number of released photon packages is set to be
N, = 10'%. We also use an active galactic nuclei (AGN)
template? to assign emission to the black hole particles.
The AGN emission is a broken power law (Schartmann
et al. 2005) characterized by the mass accretion rate and
radiative efficiency of supermassive black holes (SMBHs)
in the simulation.

The emitted photon packages will further interact
with the dust in the interstellar medium (ISM). To de-
termine the distribution of dust in the ISM, we consider
cold star-forming gas cells (star-forming or with temper-
ature < 8000 K) from the simulations and calculate the
metal mass distribution based on their metallicities. We
assume that dust is traced by metals in the ISM and
adopt a constant dust-to-metal ratio among all galax-
ies at a fixed redshift. In Vogelsberger et al. (2020),
the dust-to-metal ratios at different redshifts has been
calibrated based on the galaxy rest-frame UV luminos-
ity functions at z = 2 — 10 (e.g., Ouchi et al. 2009;
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L1t is an empirical choice here for adaptive softening and mor-
phological characterizations are not sensitive to the number of
neighbors used (e.g. Torrey et al. 2015; Rodriguez-Gomez et al. 522

2019).
2 https://skirt.ugent.be/skirt8/class_quasar_s_e_d.html
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McLure et al. 2009; J. Bouwens et al. 2016; Finkelstein
2016; Oesch et al. 2018). For galaxies below this red-
shift range, we use a Milky Way dust-to-metal value of
0.4 (Dwek 1998). We then turn the metal mass distribu-
tion into a dust mass distribution with the dust-to-metal
ratio and map the dust distribution onto an adaptively-
refined grid. The grid is refined with an Octree algo-
rithm to maintain the fraction of dust mass within each
grid cell to be smaller than 2 x 107% (Saftly et al. 2014).
The maximum refinement level is also adjusted to match
the numerical resolution of the simulations. Besides, we
assume a Draine et al. (2007) dust mixture of amorphous
silicate and graphitic grains, including varying amounts
of Polycyclic Aromatic Hydrocarbons (PAHs) particles,
which can reproduce the averaged extinction properties
of the Milky Way.

Ultimately, after photons fully interacted with dust in
the galaxy and escaped, they are collected by six simu-
lated detectors 10 Mpc away from the simulated galaxy
along the positive (or negative) x,y,z-directions of the
simulation coordinates. These six viewpoints will en-
large our training, validation, and test set sizes. We use
a detector size that scales with redshift; the field of view
is 100(1 + 2)~! kpc and 512 pixels per side, which is a
physical size of 30 kpc at z = 1 and 24 kpc at z = 1.5.
We have selected the box size to scale with galaxy size,
which also scales as (1 + 2z)~! (Bouwens et al. 2004).
The flux in each pixel, as well as the integrated SED
of the galaxy, are then recorded. Any galaxies that en-
countered errors or memory issues during the radiative
transfer processes were discarded.

2.2.2. Filter, Rebin, and PSF

From the radiative transferred images, we produce
three-color (F814W, F160W, and F606W), filtered im-
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ages using the Python code SEDPY (Johnson 2021). All
five CANDELS fields have coverage in these bands. Ad-
ditionally, we avoid using the bluest bands available to
encourage the CNN to learn overall morphology rather
than focus on star forming clumps. Following filtering,
the images are convolved with the point spread function
(PSF) of each given HST band, which we simulate using
TinyTim (Krist et al. 2011). We implement cosmological
surface brightness dimming by a factor of (1 + 2)~2 (in
frequency space). We repeat the process for each CAN-
DELS filter, as each filter has different standard flux
values and background noise (Koekemoer et al. 2011).

2.2.3. Realistic Environments

A key step to making the images fully realistic is en-
suring the galaxies are placed in the simulated image as
they would be in HST observations, including in realistic
field environments (Bottrell et al. 2019). We incorporate
background sources and noise from the CANDELS mo-
saics by creating cutouts from the CANDELS mosaics
that have no sources at the center. We then overlay our
mock images on top of that section of sky. Therefore,
the noise is truly that of CANDELS imaging, and there
are real background CANDELS galaxies and foreground
stars in our images, an essential piece for our network to
be able to distinguish from the central mergers. All of
the main steps to make an example mock image in the
F814W filter can be seen in Figure 2.

2.3. Final Dataset Creation

We split up our dataset into training (70%), validation
(15%), and test sets (15%). Each class is split by the
ratios for the training/validation/test set above, then
combined into the final training/validation/test set fol-
lowing the split. This ensures each set is split equally
between mergers and nonmergers, so that neither out-
come dominates the network’s final decisions. In reality,
there are far more nonmergers than mergers in the uni-
However, in order for the CNN to truly learn
the difference between mergers and nonmergers, we do
not want to bias its decision-making by providing an
imbalanced dataset. Recall from Section 2.2.1 that each
galaxy is viewed from six viewpoints (as if from each face
of a cube). When splitting the data, we make sure that
all viewpoints of a given galaxy are always included in
the same set, so that none of the viewpoints of galaxies
included in the training set can appear when validating
and testing the network. Each image is log normalized to
have values between 0 and 1, typical for a CNN input.
We employ the log stretch which helps faint features,
such as tidal tails, to become more visible.

After the mock image process, our images are size
202 x 202 pixels at z = 1, and 154 x 154 pixels at z = 1.5.
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ResNet18 (see Section 3.1 for information on the CNN
model) takes images of a size 224 x 224 pixels, so we use
the resize operation from SKIMAGE to reach this size, as
done in Bickley et al. (2024). This algorithm is stretch-
ing the images with interpolation, so we maintain the
spatial resolution information of the pixels in the orig-
inal mock image. To additionally enhance our training
set size, we use data augmentation on both the mergers
and nonmergers. Each galaxy image can be randomly
rotated up to 30°, flipped horizontally or flipped verti-
cally. The edges of the rotated images are filled with
zeros ensuring that all images have the same shape. We
include both the original image and the augmented im-
age in training. Following the mock image and data
augmentation processes, the final dataset consists of:
training set with 5,940 mergers and 5,916 nonmergers, a
validation dataset with 630 mergers and 624 nonmerg-
ers, and a test set of 630 mergers and 630 nonmergers.

3. METHODS

3.1. Conwvolutional Neural Network

A CNN is a type of neural network specifically de-
signed to work with images. By convolving different
filters with an input image, it is able to extract fea-
tures such as edges and shapes from the input image.
While even simpler CNN architectures can achieve very
high accuracies (above 99%) when trained to classify
everyday objects and animals (e.g., cars, chairs, horses,
dogs etc.) using very large benchmark datasets such as
MNIST (Deng 2012), classification tasks in astronomy
can be much harder. Training data sets in astronomy
are often much smaller (for example due to the lack of
many high-fidelity labels) and include classes that look
somewhat similar (e.g., mergers and nonmergers both
look like galaxies), which makes training CNNs much
harder.

Even with data augmentation, our dataset is on the
smaller side, therefore, we use transfer learning to
obtain smoother loss and accuracy curves. We use
the ResNet18 model (He et al. 2015) with pre-trained
weights from Zoobot2.0.2 zoobot-encoder-resnetl18
(Walmsley et al. 2023). Zoobot models are trained
on millions of galaxy images from Galaxy Zoo us-
ing labels provided by citizen scientists. Since
Zoobot was trained on galaxies as opposed to im-
ages of everyday objects, its weights provide a bet-
ter starting point than models trained on everyday
objects for our goal of classifying mergers. Using
Zoobot’s FinetuneableZoobotClassifier class we set
num _classes = 2 to force a binary classification: galaxy
merger or nonmerger. We train our CNN with the Adam
optimizer (Kingma & Ba 2017), initial learning rate of
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1. SKIRT TNG50 Image

010-210-110° 10! 102 103 104 1023

2. Filter and Rebin

1022

3. Convolve with PSF

4. Add Background

erg/cm?/s/A ‘
10—21 10—20 10‘—19 10‘—13

Figure 2. Main steps to create a mock F814W CANDELS image from the radiative transferred TNG50 data: 1) The left-most
panel shows the image just after it has been processed by SKIRT; 2) Next, we apply an HST F814W filter to the image so we
are no longer seeing all wavelengths of light; we also rebin the image to the same pixel scale as the CANDELS mosaics; 3) Next
we convolve with the PSF of the telescope to replicate what this galaxy would look like if observed by HST. 4) Lastly we add
real CANDELS backgrounds to include real CANDELS noise and background sources. This process will supply a more realistic
training set, and is a crucial piece to building a robust network that can classifiy CANDELS galaxies.

107°, exponential learning rate decay of 0.5 and cross-
entropy loss. Only the dense layer weights are updated
during training. We initiate early stopping during train-
ing if the validation set loss does not decrease by at least
0.0005 after 5 epochs. The weights of the model from the
epoch with the lowest validation loss are saved and used
as the best model to obtain predictions on the test data.
Training takes up to two hours and fifty four minutes de-
pending on the random seed with one Nvidia_a100 GPU.
We train with three different random seeds to ensure
model] stability.

3.2. Model Performance and Calibration

To assess the performance of the CNN, we start with
standard metrics, such as confusion matrices and Re-
ceiver Operating Characteristic (ROC) curves. When
discussing these metrics in the context of this study,
we consider merger the positive class and nonmerger
the negative class. Therefore a true positive (TP) is a
merger correctly identified as a merger, and a true neg-
ative (TN) is a nonmerger correctly identified as a non-
merger. A false positive (FP) is a nonmerger misidenti-
fied as a merger, and a false negative (FN) is a merger
misidentified as a nonmerger.

A confusion matrix tracks how many false positives
and false negatives the network found, along with the
accurate predictions. In our case, a false positive would
be an isolated galaxy identified as a merger, and a false
negative would be a merger identified as a nonmerger.
If the network performed perfectly, the confusion ma-
trix would have values only on the diagonal, with ze-
ros everywhere else, indicating that there were no false
positives or false negatives. The rows of the confusion
matrix correspond to the actual class of the galaxy (true
merger or nonmerger) and each column corresponds to
the network’s predicted class.
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Some metrics to analyze how well the network is per-
forming are accuracy, purity, and completeness.

Accuracy = TP+ TN (1)
Y= TPYTN+ FP+FN
. TP
Puity = 75— Fp 2)
TP
CompleteneSS = m (3)

Accuracy is a measurement of the fraction of the time
the network is making the correct prediction overall,
whereas purity and completeness are specific to the pos-
itive (merger) class. Purity and completeness are also
sometimes known as precision and recall. Purity can
be thought of as the percentage of predicted mergers
that are correctly classified (e.g., how often a predicted
merger is actually a merger). Completeness is the frac-
tion of mergers that are correctly retrieved (e.g., out
of the true mergers how many are correctly classified).
Here, a low completeness would mean we are missing
many mergers by classifying them as nonmergers. Often
an increase in purity, can lead to a decrease in complete-
ness, and vice versa. In the case of our CNN, having high
purity and completeness would mean low contamination
in our merger sample, since we would be classifying most
galaxies correctly (with the purity of our merger sample
being particularly important).

ROC curves are another tool to analyze the success of
a CNN. This type of curve shows the true positive rate
(completeness) against the false positive rate. The goal
is to increase the area under the curve, meaning that
there are more true positives and fewer false positives.
A model in which the network is guessing randomly each
time will have an ROC curve with a diagonal line with
a slope of 1. A perfect network has area under the curve
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of 1, and a completely random one has area under the
curve of 0.5.

A trustworthy neural network must be both accurate
and appropriately confident in its predictions. To ex-
amine the confidence of a neural network, we use two
calibration tools. First, we use the Brier Score (Brier
1950). The Brier score is a measurement of “how cor-
rect” a prediction is. For binary classification, it is de-
fined as:

N
. 1 2
Brier Score = N tz:; (pt —o0)”, (4)

where N is the number of galaxies in the test dataset,
py is the probability assigned to each galaxy by the neu-
ral network (the value following the softmax activation
function, which always lies between 0 and 1), and o;
is the final class (1 or O corresponding to merger or
nonmerger with a cutoff score of 0.5) assigned to each
galaxy. A Brier score is always between 0 and 1 be-
cause it is a mean of squared differences between out-
put probabilities and predicted classes. A lower Brier
score indicates a network that is making accurate and
well-calibrated predictions, as there is less of a difference
between the probability and the final classification.

The second calibration metric we use is the Expected
Calibration Error (ECE; Naeini et al. 2015). ECE mea-
sures a weighted average of the difference between the
accuracy and predicted probabilities. ECE is defined
by splitting the dataset into M equally spaced bins and
calculating a weighted average of the difference between
the accuracy and output probabilities in each bin.

M
B
Bce =Y Pl jace (8,) - p (8.,

m=1

()

where N is the total number of galaxies in the test set,
B,, is the number of galaxies in the m‘" bin, acc is the
accuracy, or percentage of correctly classified galaxies,
in each bin, and p is the predicted probability (output
from softmax) of the CNN in each bin. A lower ECE
indicates a smaller difference between the accuracy and
probability in each bin. This is the desired outcome for
a well-calibrated network. We can visualize this differ-
ence through a reliability diagram (DeGroot & Fienberg
1983; Niculescu-Mizil & Caruana 2005). These diagrams
show the accuracy in each bin as a function of the prob-
ability in each bin. A perfectly calibrated model would
have no difference, or “gap”, between the accuracy and
probability, and thus would plot a 1:1 line. The dif-
ference from a 1:1 line shows the miscalibration of the
network.
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3.3. CNN Interpretability

Going beyond the more standard metrics, we use
Gradient-weighted Class Activation Mapping (Grad-
CAM; Selvaraju et al. 2020), an XAI technique that
highlights sections of an input image that are important
to the final prediction. Grad-CAM uses gradients from
the final convolutional layers to highlight these influ-
ential regions so that they contain spatial information
before it is lost in the fully connected layers. Under-
standing where in the image our CNN is basing its deci-
sions can help us build trust in the model, both showing
when it perceives an image “correctly”, and to see why
it makes an incorrect decision when it does. Often, the
decisions make sense when we can see what the CNN
focused on. Grad-CAM can be activated to either the
merger or nonmerger class for any input image. Acti-
vating a specific class shows which pixels are influential
to that class, and not to other classes.

Finally we apply Uniform Manifold Approximation
and Projection (UMAP; McInnes et al. 2020), a dimen-
sionality reduction method. We use it to visualize the
high dimensional latent space of a fully connected layer
in the CNN in only two dimensions. Galaxies that the
network deems similar will lie close to each other in
UMAP space, and galaxies that the network deems dif-
ferent from each other will lie far apart. We can use the
UMAP distribution along with the physical quantities
associated with each galaxy (e.g., stellar mass, merger
stage, SFR) to investigate how the network related dif-
ferent galaxies.

4. RESULTS

We present our CNN training metrics and results
when the model is applied to our test set. We train
our model with 3 different random seed initializations
and present the mean and standard deviations of dif-
ferent performance metrics for our test set in Table 1.
Accuracy, purity, and completeness are all ~ 73%, with
the Brier score and ECE being low and indicating good
calibration overall of our models. When presenting per-
formance of an individual model (in the text and figures
in the following sections), we use Seed 626, since that
seed had the highest overall accuracy.

4.1. Model Performance and Calibration

The loss and accuracy curves for one of our models
(Seed 626) can be seen in Figure 3. We use the weights
from epoch 43, the epoch with the lowest validation ac-
curacy before overfitting occurred, as out final model.
The confusion matrix for this model our test set is shown
in Figure 4. The overall accuracy of this model is 73%,
with a completeness also of 73%. The majority of our
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ECE | AUC

73.02+0.41% | 74.0£0.01% | 72.0£0.01% | 0.19+0.01 | 0.08 +£0.03 | 0.8+ 0.01

Table 1. Accuracy, Purity, Completeness, Brier Score, ECE, and AUC for our model. The values shown are the mean and

standard deviation of the three random seeds.
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Figure 3. The loss and accuracy curves for our network.
The small data set size leads to the bumpier curves, es-
pecially in the validation set shown in the orange dashed
line. Though the training set curves in solid purple contin-
ued to improve, the validation set curves plateaued, so we
implemented early stopping to avoid overfitting. We use the
weights from epoch 43 as our best model, noted by the grey
dashed line.
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Figure 4. The confusion matrix of our Seed 626 network
showing that we do classify the majority of galaxies correctly.
The darker squares along the diagonal show the galaxies clas-
sified correctly.

galaxies are classified correctly, but about a quarter of
each class are not. We discuss possible sources of mis-
classifications in Section 4.3.

Our network’s ROC curve for Seed 626 is shown in
Figure 5. It performs better than a random classifier,
seen by our purple line above the grey dashed (random)
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Figure 5. The receiver operating characteristic curve for
our test set in Seed 626. The better the network performs,
the closer the AUC is to 1. The grey dashed line indicates a
network that randomly guesses each time, with an accuracy
of 0.5.
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Figure 6. Calibration curve of our Seed 626 network with
the test set data. The Brier score and ECE, in addition
to the overall accuracy, are denoted in the top center. A
perfectly calibrated network would have all bins lying along
the 1:1 dashed line.

line. The area under the curve AUC = 0.80. We use the
default decision threshold of 0.5 (i.e. a predicted proba-
bility of more than 0.5 is a merger, and equal to or less
than 0.5 is a nonmerger) throughout our analysis. The
colorbar in Figure 5 shows what changing that decision
threshold does to the true and false positive rates.
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In addition to simple metrics like accuracy, we also
implement two calibration metrics and plot a calibra-
tion curve for our CNN in Figure 6. The Brier score of
our network is 0.19, and the ECE is 0.08. Overall, the
network is not severely miscalibrated.

4.2. Effects of Orientation Angle, Merger Mass Ratio,
and Stellar Mass
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Figure 7. Box plot showing the number of angles (out of 6
possible angles) for which each merger was correctly classified
as a function of the merger mass ratio in Seed 626. A box
plot extends from the first quartile to the third quartile of the
data, with the solid line marking the median. The whiskers
extend to 1.5 times the range of the first to third quartile.
The empty circles are any points not included in the range
of the whiskers. The black dotted line marks p = 0.25, the
divider between a minor and major merger. The bottom,
lightest box shows that very few galaxies are misidentified
from every angle.

To understand where the network performs well and
where it does not, we seek to understand the effects of
orientation angle, specifically in tandem with the merger
mass ratio and stellar mass. Even a merger that is clear
from one angle, perhaps a face-on disk with clear tidal
tails, may look like a nonmerger from another. Each
galaxy is viewed from 6 angles, so we now look at how
many angles each galaxy in the test set was correctly
classified from. For the entire sample as a whole, the
mean and standard deviation of the number of angles
correct per galaxy for our highest performing random
seed is 4.4 + 1.8, with a median of 5. However, con-
sidering how varied the galaxies in our sample can be,
we break this down into more detail for the best model
(Seed 626).

We start by examining only the mergers. We show
in Figure 7 the number of angles for which a galaxy
was correctly identified relative to its merger mass ratio.
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The distributions in these bins (the number of correctly
classified angles) are shown with box plots, in order to
demonstrate the spread. Box plots show the middle 50%
of data inside the box, with the whiskers extending to
the farthest datapoint within 1.5 times that range. The
outliers on these plots are galaxies with a mass ratio
much higher than the bulk of the galaxies in that bin,
simply indicating that mass ratio is more rare.

Encouragingly, only four merging galaxies were classi-
fied incorrectly every time (the lowest bin on Figure 7).
Almost every merger that was classified as a nonmerger
Despite
that, we also see that plenty of minor mergers are identi-
fied often, if not from every angle. We conclude that ob-
servation angle does affect our ability to identify merg-
ers, especially minor mergers. If observation angle was
not a factor, we would only see galaxies being correctly
identified from no angles or every angle. Instead, we see
many galaxies that are correctly classified at most an-
gles, but not all. This gives us a better understanding
of how many mergers we may be missing when these
networks are applied to real data, assuming we miss a
similar percentage due to observation angle.

We next examine the relationship between the stellar
mass of a galaxy and how many angles the network could
correctly classify it from. In Figure 8, we look at both
mergers (top figure) and nonmergers (bottom figure). It
may be initially surprising that many high mass galaxies
are often misclassified, since a larger mass could make
a merger easier to see, but a large, spheroidal galaxy
undergoing a merger, especially a minor one, could eas-
ily completely obscure its companion from some angles.
Additionally, we note that there are far more low-mass
galaxies than high-mass galaxies in our sample. Non-
mergers with M, > 10°M tend to be classified cor-
rectly more often than the high mass mergers, as seen
by the longer whiskers on the top box on the nonmerg-
ers’ plot. Nonmergers are classified correctly across all
masses, but in contradiction to the mergers, if they are
misclassified it tends to be at low stellar masses. Many
merger studies are only able to consider high mass galax-
ies, so it is encouraging that with enough spatial resolu-
tion, we do have tools to identify at least a fraction of
lower mass mergers, even at z ~ 1.

We next ask the question, does our network perform
equally well on each type of merger in our merging sam-
ple? We include multiple merger stages in our sample.
The earliest mergers are still recognized as two separate
subhalos by the TNG merger trees, and the latest stage
mergers are after coalescence into one subhalo. We also
include both major and minor mergers. Our breakdown
of merger type and accuracy can be seen in Table 2.

from all six viewpoints was a minor merger.
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Accuracy
All Mergers Major Minor Early Stage Late Stage ~ Nonmergers
71.85£0.97% 75.77+£0.82% 68.3=+£0.66% 79.63+£0.74% 66.0+£0.01% 74.0+0.01%

Table 2. The accuracy for our model, broken down by different types of galaxies. The values shown are the mean and standard

deviation from our three random seeds.
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Figure 8. Box plot similar to Figure 7 showing the number
of angles for which a galaxy was classified correctly for a
range of stellar masses. The distributions for the mergers
are shown on top, and the nonmergers on the bottom. A
higher stellar mass did not automatically mean the galaxy
was easier to classify, as seen by the outlier circles. The high
mass nonmergers were easier to classify than the high mass
mergers, seen by fewer cirlces on the bottom right of the
bottom plot than the top.

One would expect the major mergers to be easier for
the network to identify than the minor mergers, as major
mergers tend to lead to large-scale disruptions of mor-
phology. Minor mergers, on the other hand, may not
have much of an effect on the morphology of the larger
galaxy. However, identifying minor mergers is a cru-
cial step in understanding how galaxies evolve and grow
(e.g., Newman et al. 2012; Kaviraj 2014; Martin et al.
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2018. We find that our network performs similarly on
major mergers and minor mergers. This is optimistic
for our chances at identifying minor mergers going for-
ward, even at z > 1. CNNs prove to be a useful tool
in identifying minor mergers that the human eye and
nonparametric methods may miss.

The network identified early stage mergers more ac-
curately than late stage mergers. We expect early stage
mergers that still have two obvious bulges and may
maintain some organized structure before they truly
encounter the other galaxy in the merger to be easier
to classify. However, multiple papers have found that
CNNs can be successful at finding post-merger galaxies
at z < 1 (e.g., Bickley et al. 2021; Ferreira et al. 2024b;
Bickley et al. 2024). This points towards a combina-
tion of machine learning and more traditional methods
like spectroscopic close pairs (e.g., Duncan et al. 2019)
to be a promising way to identify all mergers, even at
high redshift. The benefit to CNNs is that photometry
is faster and cheaper than spectra. Additionally, CNNs
will be key in analyzing the volume of data coming from
large imaging survey telescopes.

4.3. Understanding Misclassifications

In Figure 9 we show example galaxies and their Grad-
CAMs set up in the same layout as a confusion matrix.
For each example, the input galaxy image is on the left,
the Grad-CAM with class “merger” activated is in the
center, and the Grad-CAM with class “nonmerger” ac-
tivated is on the right. The true positives are on the di-
agonal, with the misclassifications on the off-diagonals.
When discussing Figure 9, activating a class refers to
asking the network to highlight which pixels are impor-
tant for that class. We can see that in most cases when
activating the Grad-CAM for the unpredicted class, the
edges tend to be highlighted, and when we activate the
Grad-CAM for the predicted class, it tends to highlight
the galaxy at the center. This is promising, showing
that even when the network makes an incorrect classifi-
cation, it is often still making its decision on the physical
features of the galaxy. The Grad-CAMs are not differ-
ent enough between classes to draw conclusions about
specific image features, but do offer confidence that the
network has learned not to focus on background noise or
sources, as seen in the bottom figure of the top left true
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Figure 9. Visual confusion matrix of galaxies in the test set. True negatives are in the upper left, and true postives are in the
lower right. The contours are 30 and 50 overlayed simply to guide the eye to where the structure is in the Grad-CAM images.
The left image is the input image, the middle is the Grad-CAM with class “merger” activated, and the right is the Grad-CAM
with class “nonmerger” activated. The class that the network predicted is boxed in green. The Grad-CAMs show that the
network focuses on the galaxy when making its prediction, but does not highlight specific morphological features.

negative quadrant, an important quality of successful
merger identification using CNNs (Bottrell et al. 2019).

We can also see in this image that the misclassifica-
tions often make sense to the human eye. The false nega-
tives are seen in the lower left. The top image has a cen-
tral structure but is overall quite smooth, with no obvi-
ous secondary bulge. The false negative quadrant shows
a lack of extended features, with only one bright nucleus.
Though the galaxy appears to have some structure from
the contours the single bright nucleus and clean back-
ground make sense for why this merger was misclassified
as a nonmerger. The top right corner represents false
positives. Both of the galaxies shown here exhibit ex-
tended features and clumpy structures. Inspecting by
eye, it is easy to see how the network thought both of
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these galaxies could be mergers with the multiple bright
patches and clumpy structures.

UMAP (Mclnnes et al. 2020) is a non-linear, dimen-
sionality reduction technique that we use to visualize the
latent space of a CNN. On Figure 10, we show UMAPs
of the test set images with colors representing values of
different physical quantities of the galaxies. The merg-
ers (circles) primarily reside on the left of the UMAP,
and nonmergers (triangles) on the right. However, there
is a lot of overlap in the middle. There is a clump of
points sitting to the bottom of the main distribution, in
which both mergers and nonmergers reside. When in-
specting these galaxies by eye, we find they happen to
be images with no background sources in the CANDELS
background cutout and appear very smooth. It makes
sense that these few galaxies are dissimilar to the rest
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Figure 10. UMAPs of the test set color-coded by stellar mass (left), and specific star formation rate right. The true nonmergers
are triangles and the true mergers are circles. We exclude axes because the important information in a UMAP is in the relative
distance between points and clustering patterns, not in absolute distances. There are clear trends with both stellar mass and
star formation rate, showing that the network picks up on these quantities even with no input information about them.

of the dataset which includes background galaxies and
noisy cutouts.

We see a clear gradient in the UMAP when colored by
the stellar mass of each galaxy (left plot on Figure 10).
The low-mass galaxies are on the bottom of the UMAP,
with stellar mass increasing towards the top. No stellar
mass information was provided during training, but the
network was able to recognize this physically meaningful
quantity. There is again a clear gradient in the UMAP
when colored by specific star formation rate (right plot
of Figure 10). Similarly to stellar mass, the lower sSFR
galaxies are on the bottom, and sSFR increases towards
the top, even though no sSFR information was input to
the model. The exception is extremely low sSFR, which
is more scattered throughout. Because of this gradient,
we speculate some of the nonmergers misclassified as
mergers may be due to high, clumpy star formation,
likely in the nonmergers seen in the top left. There were
no obvious trends for UMAPs relative to the merger
stage or merger mass ratio.

To further investigate our speculation from UMAP,
we plot the specific star formation rates in Figure 11.
The nonmergers incorrectly classified as mergers had a
higher mean sSFR than the correctly classified nonmerg-
ers (dotted and dashed lines on the left plot, respec-
tively). The mergers incorrectly classified as nonmerg-
ers had a lower mean sSFR than the correctly classified
mergers (dotted and dashed lines on the right plot, re-
spectively). This agrees with what the UMAPs showed:
the trend with sSFR could account for many of the
misclassifications. The network may have learned that
mergers tend to have higher sSFRs than nonmergers, or
picked up on a feature in the image correlated to sSFR,
leading to this result.
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5. DISCUSSION
5.1. Comparison to Other Studies

Galaxy merger identification is an inherently diffi-
cult task. Many methods have been developed for this
task, from visual identification to non-parametric meth-
ods such as CAS and Gini-Msy. These non-parametric
methods are designed to quantify the distribution of
light in an image, for example, where the light is con-
centrated and the range of galaxy brightness throughout
the image, into a single value. The threshold value sep-
arates mergers and nonmergers. These statistics alone
can only capture ~ 50% of mergers, but when combined
can be incredibly powerful (Nevin et al. 2019; Snyder
et al. 2019; Wilkinson et al. 2024).

For example, Nevin et al. (2019) successfully classify
mock SDSS mergers and nonmergers with linear dis-
criminant analysis (LDA). They achieve accuracies of
85% for major mergers and 81% for minor mergers.
Wilkinson et al. (2024) builds on this result, creating
mock galaxy images at z < 0.2 with spatial resolu-
tions varying from lower than SDSS to higher than Ru-
bin ten year co-adds, applying non-parametric methods,
and additionally combining them with LDA and random
forest methods. Even for their pristine imaging (be-
fore downgrading resolution with atmospheric blurring
and sky noise), single non-parametric statistics provide
maximum completeness (number of true mergers iden-
tified correctly/number of total mergers in the sample)
of only ~55%. This increases to 73% with an LDA,
and 86% with a random forest. Random forests have
also been used for higher-redshift samples. At a red-
shift of z = 4, Snyder et al. (2019) achieves a ~70%
completeness for mock HST and JWST images, roughly
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Figure 11. Left: sSFRs of nonmergers that were classified correctly as nonmergers in orange and incorrectly classified as mergers
in purple. Right: sSFRs of mergers that were correctly classified as mergers in purple and incorrectly as nonmergers in orange.
The dashed and dotted lines represent the mean of the correct and missclasified distributions, respectively. The incorrectly
classified nonmergers have higher sSFRs than the correctly classified images and vice versa for the incorrectly classified mergers.

twice that when only using two non-parametric statis-
tics (Gini - Mgo or C-A). All three of these works use
galaxies with M, ~ 1010M®. From 0.5 < z < 4, the
random forest in Rose et al. (2023) applied to galaxies
with 10°Ms < M, < 10'2M, attains an accuracy of
~60% on mock JWST CEERS imaging. They extend
this result to 4 < z < 5 in Rose et al. (2024) and cor-
rectly classify 59% of nonmergers and 67% of mergers.
Many works have shown that CNNs are successful at
classifying galaxy mergers and often outperform non-
parametric methods and LDA and random forest at
higher redshifts. With M, > IOIOM@ at z ~ 0.01, Pear-
son et al. (2019) classifies mergers and nonmergers in
simulated SDSS images from the EAGLE simulation,
achieving only 65.2% accuracy. They discuss that the
simulation includes a more complete sample of mergers,
not just those easy to identify by eye. Therefore, it is
by default a harder task for the CNN than identifying
mergers in SDSS observations that were also visually
identified, where they achieved 95.1% accuracy.
Mergers and nonmergers around cosmic noon were
first classified with a CNN in Ciprijanovi¢ et al. (2020),
who used mock images at z = 2 from the original Illus-
tris simulation. They showed that adding noise to im-
ages does decrease accuracy (79% accuracy on pristine
images and 76% on noisy images), but noise is a key as-
pect for realistic mock images. Their Grad-CAMs high-
lighted larger areas of the image for the merger class and
focused on more compact regions for nonmergers. Rel-
evant for this work, Ciprijanovié et al. (2020) uses the
same 500Myr merging window as our work here. How-
ever, their stellar mass lower limit is M, = 10%° M.
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They note that most of their misclassifications are com-
ing from the low mass end of their sample. Our sample
stretches to even lower stellar masses, so stellar mass
may be responsible for some of our misclassifications (see
Section 4.3).

CANDELS galaxies with M, > 10'°Mg have been
classified out to z = 3 (Ferreira et al. 2020). That mass
limit was specifically chosen to use with the largest box
size of TNG, TNG300, in order to maximize training set
size. They achieve 87% accuracy on pre-mergers, 78% on
post-mergers, 94% on nonmergers. It is mentioned that
the spatial resolution in CANDELS is higher than that
of some of their mock images, due to the simulation’s
spatial resolution. Our work uses the smaller box, but
higher resolution run of TNG50, and thus we stretch to
galaxies with stellar masses down to 100 times smaller.
That wider mass range comes with a drop in overall
accuracy.

Pushing past cosmic noon, Rose et al. (2024) classi-
fies mergers and nonmergers in CEERS with mock im-
ages from TNG100. Different from other works, their
test set of mock images is unbalanced, with far more
nonmergers than mergers, to better represent the real
universe. They split their data into three redshift bins
between 3 < z < 5 and achieve ~ 60 — 70% accura-
cies in all of them. Their mass range stretches to even
lower masses than this work, with galaxies included at
M, > 107M®. The Grad-CAMs of these mock JWST
galaxies do not show clear patterns when all six filters
are included. They note they see evidence of the network
focusing on the galaxy in some single filter Grad-CAM
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images, but the activation in other images are seemingly
random.

5.2. Why Do CNNs Struggle with Merger
Identification?

We showed that CNNs can find non local (z ~ 1)
mergers at low mass ratios (u > 1 : 10) and low stellar
masses (M, > 108M) when enough training examples
are provided. TNG50 provides a high resolution train-
ing set enabling this classification. While the network
in this paper outperforms any previous CNN at this low
mass range, it still misclassifies some galaxies. We now
explore what makes merger identification an inherently
difficult task, especially at z > 1. First we discuss the
morphology of galaxies in combination with image reso-
lution and depth. We then focus on the effect of viewing
orientation and the inherent ceiling on merger identifi-
cation.

5.2.1. Impact of Morphology and Image Quality

While a task like identifying two stellar bulges at low
redshift and high masses may be trivial for a CNN, dis-
tinguishing between clumpy star-forming regions and
two stellar bulges at higher redshifts and low masses
is not so trivial. Additionally, tidal features can be
key to distinguishing a merger from a clumpy, isolated
galaxy, but these features can be dim, especially com-
pared to the brightnesses of star-forming regions and
stellar bulges. Normalization of the images with a log
stretch does help this issue, ensuring that all pixel val-
ues are between 0 and 1 and the values are well dis-
persed within that range. With high spatial resolution
data from Roman, Rubin, JWST, and Fuclid, merger
identification at high-z should become easier, provided
we create accurate training sets, and trust our ML al-
gorithms. Ensuring that the network can understand
the difference in these brightness scales and the phys-
ical features that they tie to requires many training
images. In our case, TNG50 did not include enough
mergers at M, > 10°Mg for the network to under-
stand how to classify high-mass mergers. Conversely,
Margalef-Bentabol et al. (2024) did not include as many
M, ~ 109M® galaxies as M, > 1010M@ galaxies, and
their completeness scores were highly mass dependent
(see their Figure 8). Training a network with realistic
mock images improves performance on real data (Bot-
trell et al. 2019). In addition to supplying a deep net-
work with high-quality mock images, it is also necessary
to have an adequate number of training examples span-
ning different stellar masses, merger stages, and mass
ratios.

5.2.2. Impact of Viewing Angle on Accuracy
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Orientation angle has a known effect on classifying
the morphology of galaxies. Extending this to mergers,
the orientation angle can make it easier or more diffi-
cult to visually identify a companion galaxy or merger.
Bickley et al. (2024) suggests that there may be an up-
per limit on the accuracy of a CNN for merger iden-
tification around 90 percent, partially due to orienta-
They note that at some level, there is no way
to distinguish a clumpy nonmerger from a merger, or
to view every galaxy from a favorable angle. Wilkin-
son et al. (2024) conduct a thorough investigation of
the limitations of their merger identification scheme by
viewing angle. They classify a 3 x 10'° M major merger
(1 = 0.26) viewed at 648 angles. They find for this easy-
to-identify major merger at z = 0.05 that ~8% of the
viewing angles are unable to identify the merger, even
with their well trained LDA and random forest algo-
rithms.

This might be an inherent limit, and indeed our accu-
racy does not exceed ~90%. When we account for the
fact that our sample is composed of lower mass (by up
to 100 times) and higher redshift (which has an effect on
image resolution) galaxies and mergers with larger mass
ratios (i.e. minor mergers), we should expect an even
lower accuracy upper limit. If this upper limit applies
to z < 1 galaxies, then the upper limit will undoubtedly
be even lower than 90% at z = 1 — 1.5.

tion.

5.2.3. Impact of Star Formation

As seen in Figure 10, the CNN recognizes star forma-
tion to be important to its final classifications. With
the multiband images that the CNN is fed, it can learn
that a bluer galaxy, and thus a galaxy undergoing recent
star formation, is more likely to be a merger than a non-
merger. This could be seen as a drawback, and Bottrell
et al. (2019) use one band to specifically avoid the CNN
classifying bluer galaxies as mergers and instead force it
to classify based on morphology. However, we argue this
trend with star formation rate shows that CNN is learn-
ing something physically meaningful: a bluer galaxy is
more likely to be a merger than a nonmerger. Indeed,
the mass-matched mergers in our TNG50 dataset, on
average, have higher star formation rates than the non-
mergers (Schechter et al. 2025). Therefore, it makes
sense that the CNN would identify a bluer galaxy as a
merger more often.

We confirm in Figure 11 (left plot) that the nonmerg-
ers that are incorrectly classified have a higher mean
sSFR than the nonmergers that are correctly classified.
The right plot on Figure 11 shows that mergers misclas-
sified as nonmergers have a lower mean sSFR than the
mergers correctly classified, especially with a few low
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sSFR galaxies causing a longer tail of the missclassified
distribution.

In order to confirm that color information is not hin-
dering our model, we additionally ran two versions of a
greyscale CNN. One model was fed a single image that
summed the flux from all three filters in preprocessing,
and thus did not have the breakdown of astronomical
filters than the three channel CNN did. The other was
given a single filter F814W image. Both greyscale CNNs
had ~ 10% lower overall accuracies than our main three
channel model. More nonmergers were misclassified as
mergers in the greyscale CNNs, leading to the decrease
in accuracy. Additionally, both greyscale models still
saw a gradient with sSFR in the latent space, implying
that the CNN was able to pick up on sSFR even without
astronomical filter information, purely from morphol-
ogy. Taking filters away did not decrease a reliance on
star formation, and appears to have removed some key
features the model used when separating mergers from
nonmergers.

5.3. Looking Ahead With Applications to Real Data

In this work we used fully radiative transferred images,
as it is important to train on mock images as similar to
real observations as possible (Bottrell et al. 2019). How-
ever, no matter how careful the mock image procedure
is, there will always be differences between mock images
and real data such as noise, image artefacts, and mor-
phology of galaxies depending on the simulation used
for training. Ciprijanovi¢ et al. (2021) applied domain
adaptation techniques, which enable the network to find
and utilize similar features from the training domain
(mock images of simulated galaxies) and the target do-
main (real observations) i.e., domain-invariant features.
These techniques help overcome the limitation any dif-
ferences in the mock images and real observations. Since
radiative transfer is expensive, some papers opt to not
use radiative transfer with only a small reduction in ac-
curacy (e.g., Bottrell et al. 2019). At z > 1 we argue it
is important to use radiative transfer as dust is impact-
ing our observations and AGN, which can be very dusty,
are more common. In an upcoming paper, we will ex-
plore using domain adaptation in place of full radiative
transfer for merger classification with CNNs in order to
save computational time.

As we broach the high-z merger universe, we want to
build trust in our use of Al and understand where Al
cannot provide all of the answers. Using XAl techniques
is crucial as we are looking at imaging where there is
no obvious correct answer. Additionally, understanding
which galaxies cause miscalibration can provide insight
into which tasks ML is well-suited for and for which
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tasks more classical methods may still be preferred. For
example, combining spectroscopic pairs for early-stage
mergers with CNNs for late-stage mergers can give a
more complete catalog of all mergers in a sample (Fer-
reira et al. 2024a). This also makes the CNN’s task eas-
ier, because it only has to learn what a late-stage merger
looks like, instead of generalizing to any stage of merger.
Knowing which tools to apply to which problems is cru-
cial as we enter an era of big data in astronomy.
UMAPs show us that the network is sensitive to the
stellar mass and star formation rates of the galaxies.
In the future, we could potentially improve performance
by combining galaxies with M, < 1095 M, from TNG50
with a sample of galaxies with M, > 10%° Mg from the
larger simulation box size, TNG100, to create a more
mass-balanced and larger training set. This would be
similar to the treatment in Margalef-Bentabol et al.
(2024), where authors combine TNG100 and TGN300
galaxies for their training set. Our nonmerger sample is
currently only mass-matched due to the small box size
of TNG50. To match in any other quantity required
widening the mass match threshold too much, due to
the small number of galaxies with M, > 10°M,. How-
ever, if we draw high-mass galaxies from TNG100, we
could find SFR and mass matched nonmergers to try
to reduce misclassifications. This would also provide a
larger training set overall, which would be helpful since
our current training set is small by ML standards. With
a training set of similar numbers of major and high-mass
mergers as minor and low-mass mergers, we could po-
tentially improve the distinction between mergers and
nonmergers for all subcategories of galaxies.

6. CONCLUSION

We trained a CNN on mock HST CANDELS images
to identify galaxy mergers at 1 < z < 1.5. We used the
highest spatial resolution simulation in the TNG suite,
TNG50, enabling more detailed structures of galaxies
and galaxies of lower masses to be included in our train-
ing set. With mergers in stages from pre- to post-
coalescence, M, > 108Mg, and p > 1 : 10, we suc-
cessfully classified less obvious galaxy mergers close to
cosmic noon. Our main results are as follows:

1. Our network was 73% accurate, and was able
to identify major mergers about 76% and minor
mergers about 68% of the time.

2. Early-stage mergers (two clear galaxies) were iden-
tified about 10% more often than late-stage merg-
ers (around coalescence).
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3. Orientation angle matters when searching for
mergers, as there are some angles where the
merger is unlikely to be correctly identified.

4. In order for a single model to accurately classify
galaxies in a wide range of stellar masses (e.g.,
~ 108 Mg —10'2 M), the training set must include
sufficient examples from the entire mass range
(even if that is not representative of the observed
galaxy mass distribution).

5. CNNs can learn that higher star formation is likely
to be in a merger, even with greyscale images.
SFR- and mass-matched training sets are needed
to confidently classify high star-forming, nonmerg-
ing galaxies or mergers between low star-forming
galaxies.

Accurately identifying galaxy mergers is a key step
in understanding how galaxies build stellar mass and
evolve in morphologies over time. To do this with large
imaging surveys we need trustworthy ML algorithms.
Understanding how to build better training sets and
where high-z merger identification is failing is crucial
as we step into the era of JWST, Roman, and Rubin.
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